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1.0 GUARDED COLD PLATE THERMAL CONDUCTIVITY APPARATUS 

1.1 INTRODUCTION 

The f i r s t  6-inch diameter calorimeter w a s  designed and b u i l t  approxi- 

mately seven years ago. 

Apparatus f o r  Tests of Low-Temperature Thermal Conductivity". ('1 Since 

t h a t  t i m e ,  it has been i n  constant use i n  our laboratory.  During these 

years we  f u r t h e r  improved the calorimeter t o  make it a more v e r s a t i l e  

and e a s i l y  operable research too l .  

It is  described i n  d e t a i l  i n  the paper  "Single P l a t e  

A l l  these improvements are incorporated i n  the ADL Model-6 Calorimeter 

supplied t o  you. 

The prototype calorimeter has been used f o r  measurement of the thermal 

conduct iv i t ies  of powders such as p e r l i t e ,  c o l l o i d a l  s i l i c a ,  o l iv ine ,  

g ranodior i te ,  and t e k t i t e ;  ves i cu la r  materials such as s in t e red  pe r l i t e ,  

pumice and b a s a l t ;  and s o l i d  rocks such as g ran i t e .  The operation of 

the apparatus and the r e s u l t s  obtained i n  the temperature region from 

77 t o  400°K a t  gas pressures from 10 

i n  the Summary Reports under Contract No. NAS8-1567. (2 ' 3, 

cold p l a t e  apparatus has a l s o  been used fo r  measurements of the  emittance 

of p l a s t i c ,  m e t a l l i c ,  and non-metall ic materials and fo r  the measurement 

of the hea t  f l ux  through l aye r s  of s o l i d  and powdered materials under 

mechanical compression from 0 t o  20 p s i .  

be usefu l  i n  determining the thermal proper t ies  of simulated lunar  m a t e -  

r i a l s ,  materials c h a r a c t e r i s t i c  i n  o the r  p lane tary  environments , thermal 

in su la t ions ,  and o ther  non-metall ic materials. 

-6 t o r r  t o  atmospheric are discussed 

The guarded 

The cold p l a t e  apparatus w i l l  

I n  add i t ion  t o  the  improvements which r e s u l t  from years of operation 

of the 6-inch diameter ca lor imeter ,  severa l  of the design fea tures  of the 

more advanced ADL Model -12 Calorimeter , which w a s  conceived and manu- 

factured by Arthur D. L i t t l e ,  Inc., approximately three  years ago, ( 4 )  are 

incorporated i n  the Model-6 Calorimeter. These f ea tu res  are: 

1. Capacity of the guard vesse l  i s  enlarged by 38% t o  increase 

the time between f i l l i n g s ,  thereby providing f o r  longer un- 

in te r rupted  tests. 
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2. Copper temperature equa l i ze r s  are incorporated i n  both 

guard and measuring vesse l s ,  thereby e l imina t ing  a 
poss ib le  e r r o r  due t o  s t r a t i f i c a t i o n  of the l i qu id .  

Measuring vesse l  is  supported by three  1/4-inch O,D, 

tubes r a t h e r  than one 3/8-inch O.D. tube. Three tubes 

impart increased r i g i d i t y  t o  the  vesse l  assembly, pe r -  

m i t  more p rec i se  measurement of the pressure i n  the 

measuring vesse l ,  and provide a b u i l t - i n  f i l l  l i n e  

which s impl i f i e s  the f i l l i n g  operation. 

3 .  

4 .  A l l  s i x  l i n e s  ( three  t o  the  measuring vesse l  and three  

t o  the guard vesse l )  pass through the s a m e  opening i n  

the b e l l  jar r a t h e r  than through two openings. Assembly 

of the apparatus i s  thereby s impl i f ied .  

5. The space between the guard and measuring vesse l s  is  

connected by a 1/2-inch diameter opening t o  the  b e l l  

jar, thereby permitt ing easy  evacuation of t h a t  space. 

A s t e p  i s  provided i n  the gap between the  measuring and 

guard vesse ls .  This s t e p  reduces the p o s s i b i l i t y  of 

s t r a y  r ad ia t ion  reaching the s ides  of the measuring 

vesse l .  

6 .  

7. The sample chamber i s  made from t h i n ,  300 s e r i e s  s t a i n -  

less steel. This chamber, together with a flange on 

the guard v e s s e l ,  assures  that the s t a i n l e s s  steel 

diaphragm covering the sample chamber w i l l  be c l o s e r  

t o  the temperature of t he  cryogen contained i n  the  

guard vesse l .  

8. The O-ring type seal which w a s  successfu l ly  used i n  

the Model-12 Calorimeter is used t o  i s o l a t e  the vacuum 

i n  the  b e l l  jar from the atmosphere i n  the sample chamber. 

9. The s t a t i o n a r y  warm plate-moving cold p l a t e  arrangement 

used i n  the  o r ig ina l  u n i t  has been replaced by the 

s t a t iona ry  cold plate-moving warm p l a t e  system designed 

fo r  the Model-12 Calorimeter. 

2 



1.2 

10. 

11. 

12 .  

13. 

14. 

15. 

16 

Diameters of the  passages f o r  pumping the  b e l l  jar and 

the sample chamber are increased from 2 t o  4 inches and 

from 3/4 t o  2 inches, respectively.  

vacuum connections have been r e l o c a t e d t o  the base p l a t e  

of the Calorimeter. The new loca t ion  s impl i f i e s  the 

changing of the  test  sample. 

The system which w a s  successfu l ly  used on the  Model-12 

Calorimeter f o r  v e r t i c a l  posit ioning of the warm p l a t e  

and f o r  applying compression t o  the sample i s  u t i l i z e d  

i n  the new Model -6 Calorimeter . 
A new s p i r a l  arrangement of the c o i l  ins ide  the  warm 

plate w a s  designed. The new c o i l  provides more uniform 

heating of the  warm p l a t e .  

A detachable p l a t e  carrying four  thermocouples w a s  added 

t o  the  warm p l a t e .  It f a c i l i t a t e s  easy replacement, i f  

necessary, of the f i n e  thermocouple w i r e s .  

The thermocouple feedthrough used successfu l ly  on the 

Model-12 Calorimeter w a s  adopted fo r  the Model-6 u n i t .  

An arrangement f o r  l i f t i n g  and guiding the b e l l  jar 

and the cold p l a t e  has been added. 

The s i z e  of the  b e l l  jar has been increased t o  accommo- 

date a l a r g e r  guard vesse l  and the new arrangement of 

the vacuum connections 

I n  add i t ion ,  a l l  

CAPABILITIES OF THE CALORIMETER 

The ADL Model-6 Calorimeter i s  designed t o  measure thermal conduc- 

t i v i t y  of s o l i d ,  powder, and fibrous materials. The e f f e c t s  of va r i ab le s  

such as the type of gas penetrating the  sample,  gas pressure,  compressive 

loading, boundary temperatures, dens i ty ,  and sample thickness can be 

s tudied  i n  the  calorimeter.  

The  test sample i n  the  form of a d i s k  can range i n  thickness from 

0 t o  1 inch with diameters up t o  6-3/4 inches; the measured sec t ion  of 

the sample is  3-7/16 inches i n  diameter. 

ranging from 0 t o  20 p s i  can be exer ted  on the sample without i n t e r rup -  

t i o n  of the  test  by app l i ca t ion  of a mechanical load through an  ex te rna l ly  

A known compression force 
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operated hydraulic jack. 

from 1 x l om5  t o r r  t o  10 p s i a  f o r  any des i red  gas ,  without i n t e r rup t ion  

of the test .  

c r e t e  temperatures from 77OK t o  270°K, which can be achieved by the  use 

of var ious  l i q u i d s  bo i l ing  a t  low temperatures. The o ther  s ide  of the  

sample may be exposed t o  a range of temperatures from 77 K t o  450°K by 

proper choice of f lu ids .  The thermosta t ica l ly  cont ro l led  o i l  ba th  sup- 

p l i ed  wi th  the calorimeter can cont ro l  the  temperature of the  heat-source 

plate  only between room temperature and 400 K. 

The environment of the sample can be var ied  

One s ide  of the sample can be exposed t o  a range of d i s -  

0 

0 

1.3 DESCRIPTION OF THE CALORIMETER 

Figure 1 shows a general view of the ADL Model-6 Calorimeter. 

Figure 2 presents  a v e r t i c a l  c ros s  sec t ion  through the  calorimeter s h e l l s .  

The ADL Model-6 Calorimeter cons i s t s  of the following components: 

1.3.1 Measuring and Guard Vessels (Cold P l a t e  Assembly) 

The 300 series s t a i n l e s s  s t e e l  inert-gas-welded cold p l a t e  assembly 

shown i n  Figure 3 c o n s i s t s  of a 3-1/4-inch O.D. by 6-inch high measuring 

vesse l  (0 .66- l i te r  capacity) enclosed by a ring-shaped guard vesse l  

(7 .2 - l i t e r  capacity) made of a n  8-inch 0,D. by 15-inch high outer s h e l l  

and 3-1/2-inch O.D. by 12-inch high inner  s h e l l .  

separates the O.D. of the  measuring vesse l  from the  I . D .  of  the  guard 

vesse l .  This gap, when evacuated, decreases the heat t r a n s f e r  from vesse l  

t o  ves se l .  

0.020-inch th i ck  w a l l ,  300 series s t a i n l e s s  steel tubes,  which serve as 

vent ,  r e l i e f  and f i l l  l i n e s .  A l l  three tubes run f o r  6 inches ins ide  an 

evacuated space between the top of the measuring vesse l  and the guard 

vesse l  t o  reduce poss ib le  heat leaks along these l i n e s  i n  case the t e m -  

pera tures  of t h e  measuring and guard vesse l s  should d i f f e r .  These tubes 

pass through the  guard vessel where they are pre-cooled t o  the temperature 

of the  cryogen contained i n  the guard vesse l .  This design f ea tu re ,  and 

the enclosure of the  measuring vesse l  on a l l  s ides  but the bottom by the  

guard v e s s e l ,  thermally i s o l a t e s  the measuring vesse l  from any d i r e c t  

contact with the ambient temperature. 

A 1/16-inch wide gap 

The measuring vesse l  i s  provided with three  l/4-inch O.D. by 

4 



FIGURE 1 GENERAL VIEW OF THE ADL MODEL-6 CALORIMETER 
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A l l  three l i n e s  from the measuring vesse l ,  as w e l l  as the 1/4-inch 

O . D .  guard vesse l  f i l l  l i n e ,  pass through the 1-inch O.D. guard vessel 

neck, which simultaneously serves a s  a vent fo r  the guard vesse l .  The 

neck of the  guard vesse l  i s  6 inches long and is provided with a 2-inch 

O . D .  pant l eg  i n  order t o  reduce t h e  heat conducted from the ambient 

temperature t o  the guard vessel  along the neck. During normal operation, 

the space between the neck and the pant leg i s  evacuated, decreasing heat 

conduction from the pant leg ,  which i s  exposed t o  ambient temperature, t o  

the neck. These two design features  decrease the boil-off rate of the 

l i qu id  inside the guard vesse l ,  thereby increasing the length of opera- 

t i on  of the guard vessel  with the s a m e  charge of cryogen. 

The neck of the guard vessel  passes through the 2-1/4-inch O.D. 

neck a t  the top of the enclosing b e l l  j a r  (see Sect ion 1.3.4 below). A 

2-inch 1 , D .  by 3-inch long rubber sleeve covers the gap between the neck 

of the b e l l  j a r  and the pant leg  of the guard v e s s e l s s  neck. The space 

between the pant leg  and the neck of the guard vesse l  forms p a r t  of the 

b e l l  j a r  vacuum space. Two hose clamps sea l  the rubber sleeve seal. 

The same rubber sleeve provides a t i g h t  j o i n t  between the nose piece 

(see Figure 2) and the pant l eg .  The nose piece seals the ins ide  of the 

guard vesse l ,  permitt ing control  of the pressure of the cryogen i n  the 

guard vesse l .  The three l i n e s  from the  measuring vessel  and guard vessel  

f i l l  l i n e  pass through 5/16-inch O . D .  by 5/8-inch long s leeves protruding 

from the  top of the neck piece. The gaps between the l i n e s  and the 

sleeves are sealed with 1/4-inch O.D.  by 1-inch long pieces of a gum- 

rubber hose. The nose piece has two more sleeves: one, which begins 

a t  the top of the nose piece, i s  used for  measuring the pressure i n  the 

guard vessel  (see Section 1.4.5); the o ther ,  which protrudes 1 inch be- 

low the top of the nose piece, serves a s  a vent l i n e  f o r  the guard 

vessel .  Since the venting gas flows through a l i n e  below the pressure 

indicat ing t a p ,  there  is  no flow a t  the opening of the pressure measur- 

ing l i n e ;  therefore ,  it i s  possible t o  measure a s t a t i c  gas pressure i n  

the guard vesse l .  

A 6-1/2-inch O . D .  by 1/16-inch w a l l  thickness by 13-inch high copper 

temperature equal izer  i s  placed inside the guard vessel .  The equal izer  

8 



serves t o  e l iminate  s t r a t i f i c a t i o n  of the cryogen i n  the guard vesse l  and 

t o  conduct heat away from the vent l i n e s  of the measuring vesse l  when the 

l iqu id  l e v e l  i n  the guard vesse l  is low. Copper wool is placed ins ide  

the measuring vesse l  t o  e l i m i n a t e  s t r a t i f i c a t i o n  of the cryogen. 

The cy l ind r i ca l  and the top surfaces  of the measuring and guard 

vesse ls  facing the vacuum space are nickel-plated t o  provide Low e m i t -  

tance sur faces  t o  reduce the r ad ia t ive  heat  t r a n s f e r  t o  the vesse ls .  

The space between the guard and measuring vesse l s  i s  connected t o  the r e s t  

of the b e l l  jar by a 1/2-inch diameter pipe tee. 

evacuation of t h a t  space, p a r t i c u l a r l y  when a s t a i n l e s s  steel diaphragm 

i s  used over the sample chamber (see Sect ion 1.3.3). The bottom p l a t e  

of the measuring vesse l  is  3-7/16-inch i n  diameter (11.8 square inches 

i n  a rea)  by 5/16-inch th ick .  The bottom flange of the  guard vesse l  is  

9-1/4-inch diameter, The 7-inch diameter  por t ion ,  which is  facing the 

inside of the sample chamber, i s  a l s o  5/16-inch th ick .  

that the temperature drop through the thickness of the guard vesse l  f lange 

i s  the same as fo r  the measuring vesse l  flange. For powder o r  foam insu- 

l a t i o n ,  the e r r o r  made by assuming zero temperature rise through the 

flange i s  below 1%. 

This connection permits 

This assures  

The outer  port ion of the guard vesse l  flange i s  7/8-inch thick.  

It b o l t s  t o  the mating flange of the sample chamber. The heavy outer  

port ion of the flange provides the s t i f f n e s s  necessary t a  maintain a 

a cold seal between the mating flanges.  

The 7-inch diameter port ion of the guard vesse l  f lange, as w e l l  as 

the bottom surface of the measuring vesse l ,  c o n s t i t u t e  the guarded cold 

p l a t e  and, simultaneously, the top of the sarp le  chamber. The cold 

p l a t e  i s  covered with a black pa in t  of 0.86 emiss iv i ty  t o  provide a 

surface of known emittance for  determining the r ad ia t ion  port ion of the 

heat  t r a n s f e r  through a sample during the  test. 

A t  the bottom of the  measuring vesse l  f lange,  a 1/16 by 1/16-inch 

s t e p  i s  provided i n  the gap between the measuring and guard vesse ls .  

The s t ep  reduces the p o s s i b i l i t y  of s t r a y  r ad ia t ion  reaching the s ides  

of the measuring vesse l .  
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Three equally-spaced holes on the  circumference of the  guard vesse l  

flange are provided f o r  guide rods (see Sec t ion  1.3.3). 

prevent d i s loca t ion  of the tes t  sample when the cold p l a t e  assembly is  

lowered over the sample during assembly of the equipment i n  prepara t ion  

fo r  a test. 

The guide rods 

1 3.2 The Warm P l a t e  Assembly (Figure 4) 

The ho r i zon ta l ly  placed warm p l a t e  supports t he  sample and c o n s i s t s  

of a 6-3/4-inch diameter by 1/4-inch t h i c k  brass  p l a t e ,  covered on the  

top s ide  by a black pa in t  of 0.86 emiss iv i ty .  

copper-constantan thermocouples are embedded f l u s h  wi th  the upper surface 

of the p l a t e .  The thermocouple leads  are cemented wi th  copper cement i n  

the grooves mi l led  i n  the  lower surface of t he  same p l a t e .  Figure 5 

shows the loca t ion  of these thermocouples. 

Four #36 (.005" diameter) 

The p l a t e  i s  placed over a 6-1/2-inch diameter b ra s s  heat source 

p l a t e  i n  which a sp i r a l ed  copper c o i l  i s  cemented (Figure 6 ) .  The c o i l  

serves t o  maintain the  warm p l a t e  a t  a desired cons tan t  temperature by 

means of f l u i d  flowing through i t s  passages. The f l u i d  temperature is  

regulated i n  the constant temperature  ba th  described i n  Section 1.4.3 

below. The heat source p l a t e ,  together with the  upper 1/4-inch th i ck  

brass p l a t e  is bolted with 6 flat-headed brass screws t o  the base of 

the  warm p l a t e  assembly. 

t h i c k  brass  d isk .  It provides the des i red  s t i f f n e s s  f o r  the w a r m  p l a t e  

assembly. The base i s . suppor ted  by the  warm p l a t e  neck. The 2-inch O,D, 

x 0.28-inch th i ck  w a l l  x 13-5/8-inch long neck i s  made from 300 series 

s t a i n l e s s  steel. The long neck p ro tec t s  the hea t  source p l a t e  from an  

excessive heat exchange wi th  the ambient temperature. When the  sample  

chamber i s  evacuated, the ins ide  of t he  neck i s  evacuated a l s o ,  provid- 

ing a b e t t e r  thermal insu la t ion .  For t h i s  purpose, the  neck has four 

equal ly  spaced 1/2-inch diameter holes 1-7/8 inches below the top of the 

neck. Another set of i d e n t i c a l  holes is  loca ted  approximately 3-3/4 in -  

ches above the  lower end of the neck. 

The base i s  a 6-1/2-inch diameter by 1-inch 

The two l/4-inch 0,D. s t a i n l e s s  steel f l u i d  supply l i n e s  run ins ide  

the neck t o  the  heat source p l a t e .  The l i n e s  are s l i g h t l y  sp i r a l ed  t o  

10 
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provide f o r  thermal expansion. These l i n e s  and the  two ends of the 

copper c o i l  protruding from the heat source p l a t e  are soldered j u s t  

below the heat source p l a t e  i n t o  two copper couplings. 

During the  adjustment of the  v e r t i c a l  pos i t ion  of the warm p l a t e ,  

the neck of the warm p l a t e  assembly is  guided by a Teflon bearing 

(Figure 7) (Section 1.3.3) and an  O-ring spaced 11-1/2 inches a p a r t ,  

providing smooth bearing sur faces  and i s o l a t i o n  of the  warm p l a t e  from 

the base p l a t e  of the  apparatus.  

t i o n  i s  made with the  help of a hydraulic jack ex te rna l  t o  the sample 

chamber (see Section 1.4.6). 

The adjustment i n  the w a r m  p l a t e  posi-  

A r ing  made from 5 m i l  t h i c k  by l-1/4-inch wide polyes te r  f i lm f i t s  

over the 6-3/4-inch O.D. of the top brass  p l a t e  of the warm p l a t e .  

use of the r i n g  i s  necessary only a t  t i m e s  when powdered materials are 

under t e s t ;  it prevents the  powder from flowing over the edges of t he  

warm p l a t e .  The r ing  can s l i d e  down along the edge of the warm p l a t e  

and, t he re fo re ,  does not i n t e r f e r e  wi th  the  r a i s i n g  of the warm p l a t e  

during a tes t .  

The 

1.3.3 Sample Chamber (Figures 4 and 8) 

The sample chamber is  bounded by the guarded cold p l a t e  on the top, 

by the 3/4-inch th i ck  base a t  the bottom and by the  7-inch I . D ,  x 3-inch 

high s k i r t  a t  the  s ides .  A 9-1/4-inch diameter by 7/8-inch t h i c k  flange 

i s  welded a t  the  top of the sample chamber s k i r t .  The base c a r r i e s  a 

1/2-inch diameter connection f o r  measuring vacuum (or pressure) i n  the  

sample chamber. The sample chamber is supported from the  base p l a t e  of 

the calorimeter by a 2-1/2-inch O.D., 0.020-inch w a l l  neck welded t o  the 

base wi th  a 3-inch O.D, by 0.028-inch th ick  w a l l  by 7-inch long pant l eg  

around it .  

the b e l l  jar vacuum. This vacuum and the length  of the  neck thermally 

i s o l a t e  the sample chamber from the ambient temperature. For the s a m e  

purpose, the base of the sample chamber i s  r a i sed  1/4-inch above the  

base p l a t e  of the  apparatus (see Section 1.3.5 below). 

i s  made from 300 series s t a i n l e s s  steel. A t  the bottom, the sample chamber 

neck i s  sealed from the  ambient conditions by a n  arrangement of two flanges 

and a 2-inch I .D .  by 3/16-inch c ross  sec t ion  O-ring. 

The vacuum between the  neck and i t s  pant l e g  is  common with 

The whole assembly 

The neck of the  warm 
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p l a t e  (see Section 1.3.2 above) s l i d e s  through t h i s  O-ring and a 3-inch 

O.D. by 2-inch I.D. x 3/8-inch th i ck  Teflon bearing when the warm p l a t e  

v e r t i c a l  pos i t i on  i s  being adjusted.  

J u s t  above t h i s  seal, the neck of the  sample chamber c a r r i e s  one 

The l-1/8-inch tubing is l-1/8-inch O.D. and one 2-inch O.D. tubing. 

provided wi th  a tee and two manually-operated 1 -inch brass  block vacuum 

valves. 

the o the r  valve can be used t o  bleed air o r  o the r  gases i n t o  the sample 

chamber. 

A 5CFM roughing pump is connected t o  one of the  valves,  while 

The 2-inch O.D, tubing through a manually-operated, 2-inch ga te  

vacuum valve is  connected t o  the  4-inch 0 , D .  tubing leading from the 

b e l l  jar t o  the high-vacuum system (Section 1.4.1). Through various 

s e t t i n g s  of these valves (provided the sample chamber i s  hermetically 

sealed from the vacuum i n  the b e l l  j a r )  it i s  poss ib le  t o  evacuate the 

sample under test  t o  any degree of vacuum o r  t o  introduce various gases 

in to  the sample chamber. The ring-shaped space between the  neck of the 

warm p l a t e  and the neck of the sample chamber serves as a passage be- 

tween the sample chamber and the  serv ice  connections described above. 

The Teflon bearing described above i s  scalloped on the  inner  diameter 

i n  order t o  provide passages fo r  evacuation. 

A 9-1/4-inch diameter 0.0015-inch t h i c k  300 series s t a i n l e s s  steel 

diaphragm clamped between the top flange of the sample  chamber and the 

flange on the  guard vesse l  (Section 1.3.1) i s  used t o  hermetically seal 

the sample chamber from the  surrounding vacuum space of the  b e l l  jar. 

A highly compressed 7-1/2-inch I.D. by 1/16-inch cross  sec t ion ,  neoprene 

O-ring provides the seal between the diaphragm and the  flange of the 

sample chamber. 

1.3.4 B e l l  Jar (Figure 9) 

The warm p l a t e ,  t he  co ld  p l a t e  assembly, and the  sample chamber are 

enclosed i n  a 12-3/4-inch O.D. by 19-inch high, 300 series s t a i n l e s s  steel 

b e l l  jar. The b e l l  jar can be evacuated by the high vacuum pumping system 

described i n  Section 1.4, l  below. The b e l l  jar is placed on a base p l a t e  

(see Sec t ion  1.3.5 below). An O-ring provides a vacuum-tight seal between 

17 



FIGURE 9 BELL JAR 

18 



the flange of the b e l l  jar and the base p l a t e .  

0.028-inch t h i c k  neck protrudes 1 inch above the  top of the  b e l l  jar, 

The neck of the guard vesse l  which c a r r i e s  vent and f i l l  l i n e s  fo r  both 

vesse ls  passes through t h i s  neck. 

3-inch long sleeve made from na tu ra l  rubber serves t o  seal the gap be- 

tween the neck of the  b e l l  jar and the  neck of the guard vesse l .  

bottom flange of the  b e l l  jar  has 6 equally-spaced clearance holes fo r  

1/2-inch diameter b o l t s .  These b o l t s  provide i n i t i a l  compression f o r  

the O-ring between the  flange and the base p l a t e  (when the vacuum i n  

the b e l l  j a r  i s  e s t ab l i shed ,  atmospheric pressure provides s u f f i c i e n t  

compression of the O-ring f o r  i t  to  s e a l ) .  

A 2-1/4-inch 0 , D .  by 

A 2-inch I . D ,  by 1/4-inch th i ck  by 

The 

I n  add i t ion  t o  the b o l t  clearance holes ,  th ree  other 9/16-inch 

diameter, equally-spaced holes are provided i n  the flange. Guide rods 

from the base p l a t e  are s l i d i n g  i n  these holes when the b e l l  jar i s  

l i f t e d  o r  lowered. This arrangement prevents the b e l l  j a r  from swinging 

and damaging O-ring o r  o ther  components. 

Two l i f t i n g  ears are welded a t  the top of the  b e l l  jar, The ears 

are provided with 1/2 x 13  N , C , T .  b o l t s  connecting them with the fork 

on the  h o i s t  (Section 1.4.7). 

1.3.5 Base P l a t e  

Figure 10 shows the drawing of the  base p l a t e  assembly. The base 

p l a t e  i s  made from 15-inch diameter by 1-inch t h i c k  300 series s t a i n l e s s  

steel. I n  i t s  center  it has a 3-inch diameter hole in s ide  which a pant 

leg  of the  sample chamber neck i s  welded (Section 1.3.3). I n  add i t ion ,  

the base p la te  has a 4-inch diameter tubing wi th  a flange t o  which the 

pumping system described i n  Section 1.4.1 below can be connected. Another 

1-inch opening i n  the  base p l a t e  serves fo r  gauging vacuum i n  the b e l l  jar 

and i n  the sample chamber. 

vacuum gauges are provided f o r  t h i s  purpose. The base p l a t e  i s  provided 

wi th  a 12-1/2-inch I.D. groove f o r  a 1/4-inch cross  sec t ion  O-ring. The 

O-ring, as mentioned i n  Section 1.3.4, seals the  vacuum i n  the b e l l  jar. 

Three equally-spaced 1/2-inch diameter by 4-inch long guide rods are 

bolted i n t o  the base p l a t e  (see Section l .3 r ,4) .  

Two sets of ion iza t ion  and thermocouple- 
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1.4 INSTRUNENTATION 

Figure 11 shows the  schematic of the  instrumentation necessary f o r  

Instrumentation shown by the operation of t he  ADL Model-6 Calorimeter. 

dotted l i n e s  i s  not supplied by Arthur D. L i t t l e ,  Inc. 

1.4.1 Vacuum Pumping System 

The vacuum pumping system supplied wi th  the calorimeter is presented 

schematically i n  Figure 1 2 .  The system cons i s t s  of a 4-inch detachable 

high-vacuum pumping s t a t i o n  (NRC, Model 3305) , a 140 l i t e r /min  roughing 

pump (Welch, Model 1402B) and a system of  vacuum valves.  

The 4-inch, high-vacuum pumping s t a t i o n  i s  a self-contained u n i t  

which i s  connected t o  the  4-inch O.D. tube flange of the base p l a t e  

(Section 1.3.5). 

During the  tes t ,  t h i s  vacuum s t a t i o n  evacuates and maintains high vacuum 

(below 1 x l om5  t o r r )  i n  the b e l l  jar. 

maintains vacuum i n  the  sample chamber (Section 1,3.3) when a vacuum 

above 1 x 10 t o r r  i s  required.  

The s t a t i o n  i s  described i n  the  supplied NRC Manual. 

I n  add i t ion ,  it evacuates and 

-2 

Primary function of the  Welch roughing pump i s  t o  evacuate and 
-2 maintain vacuum i n  the sample chamber when a vacuum below 1 x 10 t o r r  

i s  required. However, by manipulation of the va lves ,  it can be used f o r  

roughing of the b e l l  jar  and sample chamber before the  test .  This 

fea ture  pe rmi t s  the operator t o  keep the high-vacuum pumping s t a t i o n  

clean and ready operating behind the closed 4-inch ga te  valve while the  

test sample i s  being changed. 

1.4.2 Measurement of  the  Vacuum i n  the B e l l  Jar and Sample Chamber 

A s  w a s  mentioned i n  Section 1.3.5, the base p l a t e  of the calorimeter 

i s  equipped with two ion iza t ion  gauges (NRC, Model 518) and two thermo- 

couple-vacuum gauges (NRC, Model 501). (See Figures 10 and 12 . )  The 

upper s t a t i o n  cons is t ing  of one thermocouple-vacuum gauge and one 

ion iza t ion  gauge serves t o  measure vacuum i n  the  b e l l  jar. The ioniza- 

t i o n  gauge cont ro l  supplied with the NRC high-vacuum pumping s t a t i o n  

(see Section 1.4.1) serves as the read-out instrument f o r  t h i s  p a i r  of 

gauges. 
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The lower s t a t i o n ,  cons i s t ing  of two i d e n t i c a l  gauges, serves t o  

measure vacuum i n  the sample chamber, I n  add i t ion ,  t h i s  s t a t i o n  has a 

compound pressure gauge wi th  the range from 30 inches of mercury vacuum 

t o  15 ps ig  pressure (see Figure 13).  Ion iza t ion  and thermocouple-vacuum 

gauges are read on the ion iza t ion  gauge cont ro l  supplied wi th  the  c a l o r i -  

meter (Figure 13) .  Using a l l  th ree  gauges, the  pressure i n  the  sample 

chamber can be read from 1000 t o r r  t o  10  t o r r  on the compound gauge, 

from 1 t o r r  t o  5 x lom3  t o r r  on the thermocouple gauge and from 5 x 10 

down t o  1 x t o r r  on the  ion iza t ion  gauge. 

-3 

During the normal operation of the calorimeter (provided outgassing 

of the sample i s  neg l ig ib l e ,  the  vacuum system and the  high-vacuum pump- 

ing s t a t i o n  are clean) the vacuum i n  the b e l l  jar should be below 

5 x t o r r  warm and around 1 x 10 (or below) when l i q u i d  n i t rogen  

i s  used i n  the  guard and measuring vesse l s .  

usua l ly  runs approximately a decade above the b e l l  jar pressure (5 x 10 
-5 t o r r  warm and 1 x 10 

-6 

Sample chamber pressure 
-4 

o r  below cold) .  

1.4.3 Measurement and Control of the Warm P l a t e  Temperature 

To measure the temperature of the warm p l a t e ,  four 5-mil diameter 

copper-constantan thermocouples are provided. 

The thermocouple leads  are connected t o  a s e l e c t o r  switch (see Figure 13). 

The corresponding wires from the s e l e c t o r  swi tch  should be connected t o  

an i c e  junction and t o  a s u i t a b l e  potentiometer (such as L & N ,  K - 3  type) ,  

o r  a recorder. 

(See Section 1.3.2 above.) 

To maintain the warm p l a t e  a t  a required temperature, the  heating 

c o i l  of  the warm p l a t e  i s  connected t o  the constant temperature o i l  

bath. The ba th  permits the  warm p l a t e  t o  be kept a t  any steady tempera- 

t u re  between the  room temperature and 400 K. 
capacity i n d u s t r i a l  l i q u i d  hea ter  (Dayton #33937). A wide-range prec is ion  

0 The o i l  ba th  i s  a 30-gallon 

thermostat (United E l e c t r i c  Control, Type D5) and two heavy-duty heating 

elements (Chromolox #TG 130, 3000 watts each, used i n  series) are s u i t a b l e  

f o r  heating o i l .  A 16 GPM capacity turb ine  type pump (Deming, Model 3900, 

3/4" s i ze )  c i r c u l a t e s  t he  o i l  ( C i t i e s  Service,  300T Pacemaker Turbine O i l )  

through the warm p l a t e  and the bath. 

with the c i r c u l a t i n g  system. One--the bypass valve--permits c i r c u l a t i o n  

Two three-way valves are supplied 
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of the o i l  through the pump and the ba th  only, thereby permitt ing t o  

start the warm-up cycle a t  any t i m e  without a f f e c t i n g  the temperature 

of the w a r m  p l a t e .  

warm p l a t e  t o  an a u x i l i a r y  p l a t e  (see Section 2.3:3 below) used wi th  

the probe and the l i n e  hea t  source. 

The o the r  valve p e r m i t s  d ivers ion  of flow from the 

When the o i l  flow i s  c i r cu la t ed  through the  warm p l a t e ,  two d i a l  

thermometers (see Figure 13) (Weston, Model 2281) ind ica t e  the  i n l e t  

and o u t l e t  temperature of the  o i l .  These thermometers are used only f o r  

quick-glance reference of the warm plate  temperature. Thermocouples must 

be used t o  read the p rec i se  temperature of the warm p l a t e .  O i l  flow in -  

d i ca to r  i n s t a l l e d  i n  the  warm p l a t e  o i l  c i r c u i t  (see Figure 13) shows i f  

the o i l  flow is  normal. 

I n  case the temperature of the warm p l a t e  i s  required t o  be outside 

the l i m i t s  provided by the o i l  ba th  capac i ty ,  the  l a t te r  can be discon- 

nected a t  the f l e x i b l e  tubing near the warm p l a t e .  Provided the  o i l  has 

been c a r e f u l l y  washed from the  warm p l a t e  c o i l ,  o the r  cooling o r  warming 

f l u i d s  o r  gases can be used. For example, l i q u i d  nitrogen flow w i l l  

provide temperature near 80 K. Ref r igera t ion  u n i t  can be a t tached  fo r  

temperatures near 270 K. 

0 

0 Steam o r  hot gas can be used above 400°K. 

1.4.4 Measurement of Cryogen's Boil-Off Rate 

The heat f lux  passing through the tes t  sample i n  the calorimeter i s  

ca lcu la ted  from the boi l -of f  rate of the cryogen contained i n  the measur- 

ing vesse l  (see Section 1.3.1 above). Boil-off rates i n  excess of 3 

l i ters  of gas per hour can be successfu l ly  measured with a simple w e t  

test gas m e t e r  (such as American Meter C o .  AL-17, 0.1 f t / r ev  meter). 

To measure low boil-off rates (below 3 l i t e rs  p e r  hour) w e  supplied 

with the  calorimeter a system cons is t ing  of a 2-1;ter capacity g l a s s  

graduate placed upside down i n t o  an  18-inch wide by 24-inch long by 2- 

inch deep t r a y  f i l l e d  wi th  low vapor-pressure o i l  (Figure 14). 
graduate i s  set wi th  i t s  open end 1/2 inch below the  o i l  surface.  

the o i l  seals the open end of the graduate. The upper (closed) end of 

the graduate c a r r i e s  l/4-inch diameter tubing t o  which a rubber hand 

pump i s  attached. The pump is  used pe r iod ica l ly  t o  suck the o i l  from 

3 

The 

Thus, 
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the t r a y  i n t o  the  graduate. The l a rge  s i z e  of the  t r a y  is chosen t o  make 

a neg l ig ib l e  change i n  the  o i l  l e v e l  between the  time when the  graduate 

i s  f i l l e d  wi th  o i l  from the t r a y  and when the  graduate i s  empty of a l l  

the  o i l  i n  the t r ay .  

One end of a 1/4-inch diameter copper tubing i s  placed ins ide  the  

graduate under the o i l  surface.  The o ther  end of t h i s  tubing i s  connected 

t o  the vent  of the measuring vesse l .  

During the  tes t ,  the  graduate is  pe r iod ica l ly  f i l l e d  with o i l  (using 

the rubber hand pump); the boil-off gases from the  measuring vesse l  bubble 

through the o i l ,  d i sp lac ing  i t  from the graduate. The boi l -of f  rate i s  

ca lcu la ted  from the time in t e rva l  a known amount of o i l  i s  displaced from 

the graduate. 

A sample ca l cu la t ion  of the  heat f l ux  through a test  sample i s  

presented i n  Section 1.8.2. 

1.4.5 Measurement and Control of Cryogenss Pressure 

When measuring low hea t  f luxes ,  two conditions must be s a t i s f i e d  

i n  order  t o  receive a measurement of a reasonable precision: 

1. The pressure of the  l i q u i d  i n  the measuring and guard 

vesse l s  has t o  be the  same. This condition assures  

t h a t  no heat is t r ans fe r r ed  from vesse l  t o  vesse l .  

2. The absolu te  pressure of the l i q u i d  i n  both vessels 

has t o  s t a y  constant through the  dura t ion  of the  test  

once the steady state i s  reached and the  measurement 

i s  s t a r t e d .  This condition a s su res  that the  bo i l ing  

temperature of the  cryogen remains constant.  

The f i r s t  condition is  e a s i l y  s a t i s f i e d  by observing the pressure 

applied t o  the measuring vesse l  as indicated on the  o i l  manometer, and 

by pe r iod ica l ly  matching the  pressure i n  the guard vesse l  w i th  t h i s  

pressure.  The pressure i n  the guard vesse l  may be var ied  by changing 

the immersion depth of the  boi l -of f  discharge tube from the  guard vessel 

i n  the o i l  bath. 

The gauge pressures i n  both vesse ls  are indica ted  by the  o i l  mano- 

meters (Figure 19) supplied wi th  the calorimeter.  The r e l i e f  l i n e  of 
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each vesse l  is connected by a 1/4-inch I . D .  gum rubber l i n e  t o  t h e  cor- 

responding o i l  manometer. 

To maintain the absolu te  pressure i n  both ves se l s  a t  the constant 

l e v e l  i s  more d i f f i c u l t  because of the v a r i a t i o n  i n  barometric pressure.  

Depending on the  kind of the t e s t  and on the required prec is ion ,  

one of the following three  so lu t ions  can be applied: 

1. No cor rec t ion  is necessary i f  the  rate of the  barometric 

pressure change i s  equal t o  o r  slower than 1 to r r /h r ,  the 

heat f l ux  through the  test  sample i s  g r e a t e r  than 0.1 

Btu/hr ( f o r  most’evacuated powders of 1 inch o r  less th ick-  

ness,  the heat f l w  between room temperature and l i q u i d  

n i t rogen  temperature w i l l  be  below t h a t  f i gu re ) ,  and a 

prec is ion  of + - 10% i s  required. 

2. I f  the  conditions described under (1) are not m e t ,  a 

cor rec t ion  i n  c a l c u l a t i o n  can be applied using the curve 

of barometric pressure vs. time, mass of  the  cryogen i n  

the  measuring vesse l  a t  the t i m e  of the reading and 

proper t ies  of the cryogen a t  corresponding pressure.  

3 .  The pressure s t a b i l i z e r  designed by ADL f o r  Model-12 

Calorimeter and described i n  Reference 5 can be adopted. 

1.4.6 Measurement and Control of Warm Pla teqs  Vertical Pos i t i on  

A s  we described i n  Section 1.3.2, the v e r t i c a l  pos i t ion  of the  warm 

plate can be ad jus ted ,  which makes it poss ib le  

1. t o  use a test sample of any thickness between 0 and 1 inch; 

2. t o  apply up t o  20 p s i  compression t o  the  test  sample with- 

ou t  i n t e r rup t ion  of the  test. 

The adjustment i n  height o r  compression i s  performed by manipulating the 

hydraulic jack located ex te rna l  t o  the sample chamber under the  warm p l a t e  

neck (see Figure 15). Two preloaded tension springs a t tached  t o  the neck 

of the warm p l a t e  r e tu rn  the jack and the warm p l a t e  t o  t h e i r  lowest 

pos i t ion .  

Hydraulic jack (Black Hawk, Model R618) is  operated by o i l .  I n  order 

t o  keep a constant pressure on the sample for  a prolonged period of time, 
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FIGURE 15 ADJUSTMENT MECHANISM FOR THE WARM PLATE POSITION 
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we found it necessary t o  have a supply of constant  pressure (such as a 

compressed gas  b o t t l e  wi th  a regulator)  ac t ing  over t he  o i l .  This ar-  
rangement provides a s teady pressure on the test  sample even i f  t h e  test  

sample has a tendency t o  creep under compression. It is  necessary t o  

pe r iod ica l ly  c a l i b r a t e  the  hydraul ic  system i n  order  t o  e s t a b l i s h  the  

r e l a t ionsh ip  between the pressure indicated by the " ram pressure" gauge 

(see Figure 16) and the actual compression appl ied t o  the sample. The 

per iodic  c a l i b r a t i o n  is required because forces due t o  f r i c t i o n  i n  the 

Teflon bearing and O-ring on the warm p l a t e  neck and i n  the O-ring on 

the hydraulic jack may vary wi th  time, t igh tness  of the seals, and ap- 

p l i ed  lubr ica t ion .  

The hydraulic jack system does not  e a s i l y  lend i t s e l f  t o  a pos i t i ve  

posi t ioning of the warm p l a t e ,  We recommend the  use of three spacers 

equal ly  spaced on the circumference of the  warm p l a t e .  

made from Phenolic i n  s i z e s  1 / 4 - ,  3/8-, and 1/2-inch ( three  of each) are 

supplied wi th  the ca lor imeter ,  

d rau l ic  jack s l i g h t l y  i n  excess of that necessary t o  move the warm p l a t e ,  

the l a t t e r  w i l l  maintain a steady pos i t ion  throughout the t es t .  

Such spacers 

When a pressure i s  appl ied t o  the  hy- 

1.4.7 B e l l  Jar and Cold P l a t e  L i f t i n g  Hoist  

The b e l l  jar and the  cold p l a t e  assembly have t o  be l i f t e d  i n  order  

t o  gain access  t o  the sample chamber €or in se r t ing  o r  changing of the 

test sample. Since the  l i f t i n g  i s  d i f f i c u l t  t o  perform manually, a 

hydraul ic  h o i s t  arrangement (see Figure 19) i s  provided. The h o i s t  i s  

operated by a pressure of c i t y  water (40-60 psig)  on the l i f t i n g  s t roke  

and by i t s  own weight on the down s t roke .  The three-way valve cont ro l -  

l i n g  the operat ion of the h o i s t  i s  located on the right-hand s ide  panel 

of the calor imeter  (see Figure 1 3 ) .  

The s a m e  h o i s t  can be used during a complete disassembly of  the 

calorimeter.  The b e l l  jar can be l i f t e d  over the  cold p l a t e  assembly, 

swung t o  a s ide ,  and lowered on the  calor imeter  t a b l e  beside the base 

p l a t e .  Cold p l a t e  assembly then can be l i f t e d  manually. 
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FIGURE 16 FRONT CONTROL PANEL 
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1.5 INSTALLATION INSTRUCTIONS 

1.5.1 Pos i t ion  of the Calorimeter 

The calor imeter  should be placed i n  the laboratory i n  such a way 

that the right-hand cont ro l  panel (Figure 13) and f ron t  control  panel 

(Figure 16) of the apparatus are e a s i l y  reachable. Enough room should 

be l e f t  on the l e f t  s ide  of the calor imeter  f o r  the 4-inch high-vacuum 

pumping s t a t i o n  (Section 1.4.1). 

matching 4-inch flanges on the calorimeter and on the pumping s t a t i o n  i n  

the plan view. Then, using four jack screws provided on the base of the 

pumping s t a t i o n ,  l i f t  it t o  match flanges i n  the v e r t i c a l  plan. Lubri-  

cate  O-ring supplied with the pumping s t a t i o n  with a vacuum grease.  To 

place the  O-ring i n t o  the groove on the 4-inch flange of the pumping 

s t a t i o n ,  swing the f ront  of the calorimeter s l i g h t l y  away from the vacuum 

system. When swinging the calorimeter back i n  place, m a k e  sure  the 

O-ring does not f a l l  out of the groove. B o l t  the  flanges together with 

e ight  3/4-10 NCT b o l t s  and nuts  supplied with the calorimeter.  

Place the high-vacuum pumping s t a t i o n  

1.5.2 Service of the Constant Temperature O i l  Bath 

To f i l l  the o i l  bath with 30 gal lons of o i l  supplied with the appa- 

r a tus ,  unscrew the 3/4-inch p i p e  plug on top of the o i l  bath (Figure 19) .  

F i l l  o i l  slowly, using a funnel, o r  siphon o i l  from the cans. 

1.5.3 Water and Drain Requirements 

A s  mentioned i n  Section 1.4.7, the l i f t i n g  ho i s t  of the calorimeter 

opera tes  on pressure o f  the c i t y  water. Figure 1 7  shows the p l a t e  where 

c i t y  water (in) and dra in  (out) are to be connected. 

The high-vacuum pumping s t a t i o n  (Section 1.4.1) requires  1 2  GPH of 

Water and dra in  connections are c i t y  w a t e r  t o  cool the d i f fus ion  pump. 

located a t  low f ron t  of the vacuum s t a t i o n  (Figure 19).  

1.5.4 E lec t r i ca l  Requirements 

Roughing pump, o i l  c i r cu la t ing  pump and e l e c t r i c a l  heaters  are 

operated by e l e c t r i c i t y .  Each component i s  supplied with on-off switch 

located on the r i g h t  s ide  panel of the calorimeter (see Figure 13).  The 
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FIGURE 17 CITY WATER AND DRAINAGE CONNECTIONS FOR THE HOIST 
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wiring diagram of the  calorimeter is  presented i n  Figure 1.8. 

m e t e r  i s  wired i n t e r n a l l y ,  and only two 20-foot cables  with standard 3- 

prong plugs are t o  be connected t o  a 220 V ,  1-phase, 60-cycle o u t l e t  and 

a 110 V ,  1-phase,  60-cycle o u t l e t  i n  the  laboratory.  

pumping s t a t i o n  is  wired i n t e r n a l l y  a l s o ,  and a 20-foot cable wi th  a 

standard 3-prong plug is  t o  be connected t o  a 110 V ,  1-phase, 60-cycle 

o u t l e t .  

The c a l o r i -  

The high-vacuum 

1.5.5 Requirement fo r  Compressed Gases 

A s  mentioned i n  Sec t ion  1.4.6, a constant pressure source is required 

A nitrogen t o  operate the hydraulic jack  which pos i t i ons  the warm p l a t e .  

gas b o t t l e  with 0 t o  1000 p s i  r egu la to r  and connecting tubing and f i t t i n g s  

i s  t o  be supplied by the customer. The supply l i n e  i s  t o  be a t tached  t o  ’ 

the connection on the  l e f t  s ide  of the  calorimeter j u s t  below the  l e v e l  

of the t ab le .  I n  add i t ion ,  a nitrogen gas supply with a low-pressure 

regula tor  (below 1 psig) i s  necessary f o r  breaking vacuum i n  the  b e l l  

jar and sample chamber a f t e r  each test .  We a l s o  advise having a low- 

pressure helium supply handy f o r  occasional vacuum l e a k  de tec t ion  work. 

1.6 PROCEDURE FOR CHANGE OF TEST SAMPLE 

1.6.1 Disassembly of the Calorimeter (Follow Figure 19) 

Before disassembly i s  s t a r t e d ,  a l l  of the s t e p s  i n  Sections 1.7.5 

and 1.7.6 must have been c a r r i e d  out. 

1. 

2. 

3. 

4. 

5. 

6. 

Remove a l l  6 b o l t s  holding the  b e l l  jar t o  the base p l a t e .  

Remove a l l  four l/4-inch O.D. gum rubber tubes leading from 

the  top of measuring-guard vessel t o  the corresponding 

instrumentation. 

Swing rubber tube support out of the way of the  r i s i n g  

b e l l  jar. 

Remove l/4-inch O.D, gum rubber s leeves  over the four f i l l  

and vent l i n e s  t o  the  measuring and guard vesse l s .  

Remove three  m e t a l  clamps t igh ten ing  the 2-inch I . D .  rubber 

sleeve placed over the b e l l  jar neck. 

Pu l l  ou t  the  guard vesse l  neck enclosure. 
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7. 
8. 

9. 

10. 

11. 

1 2 .  

13. 

14. 

15. 

1 6 .  

17. 

Remove the 2-inch I . D .  rubber sleeve. 

L i f t  slowly the  b e l l  jar t o  the  pos i t i on  j u s t  above the 

flange of the  cold p l a t e  assembly (see Figure 20) by 

operating the hydraulic h o i s t  valve (see Figure 13) .  

Attention: Pos i t i on  of the h o i s t  valve handle de t e r -  

mines the rate of l i f t i n g .  

Remove a l l  12 b o l t s  holding the  cold plate  assembly t o  

the  sample chamber flange. 

I n s e r t  3 co ld  p l a t e  l i f t i n g  ears i n t o  holes i n  the cold 

p l a t e  flange (see Figure 20). 

Lower the b e l l  jar slowly i n t o  the pos i t i on  j u s t  above 

(1/16" t o  1/32") the l i f t i n g  ears. 

Use any three  b o l t s  supplied t o  hold the  b e l l  jar  t o  the 

base p l a t e  fo r  securing the l i f t i n g  ears t o  the b e l l  jar 

flange (see Figure 21) .  

L i f t  the b e l l  jar-cold p l a t e  assembly. 

Attention: Only for  complete disassembly of the c a l o r i -  

m e t e r  o r  f o r  a study of the test  sample i s  it necessary 

t o  l i f t  the assembly above the ends of the  cold p l a t e  

guide p ins  (as shown i n  Figure 21). Then the assembly 

can be swung out  of t he  way on the h o i s t  arm and lowered 

t o  rest on the calorimeter t ab le .  

sample change, it i s  not recommended t o  l i f t  the assembly 

above the ends of the  guide p ins .  

Remove t h s  S.S, diaphragm ( i f  used) and the O-ring ( i f  

used) on top of the sample chamber. 

Examine and remove the test sample. 

Check sample chamber f o r  :cleanliness 

The calorimeter i s  ready fo r  a new test  sample. 

During the normal 

1.6.2 Reassembly of the Calorimeter 

Before reassembly i s  s t a r t e d ,  a l l  of the  s t eps  shown i n  Section 

1.6.1 must have been c a r r i e d  out. Follow Figure 21, then 20, then 19. 
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FIGURE 20 LIFTING OF THE BELL JAR 
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FIGURE 21 LIFTING OF THE COLD PLATE ASSEMBLY 
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1. Examine the  surfaces of the  co ld  and warm p l a t e  t o  make 

sure  t h a t  the  black pa in t  is  i n  good condition. Repaint 

i f  necessary (see i t e m  6 ,  Section 1.8.4 f o r  pa in t  spec i -  

f i ca t ions )  

Se t  the polyes te r  f i lm r ing  a t  the  edge of the warm p l a t e  

i n t o  a required pos i t i on  i f  a powder in su la t ion  is  t o  be 

t e s t e d .  Remove it, i f  o the r  than powder w i l l  be t e s t ed .  

2. 

3 .  Place the  tes t  sample on the  warm p l a t e .  

4 .  Place an  O-ring on the sample chamber flange ( i t e m  4 ,  Section 

1.8.4) and a new S.S. diaphragm ( i t e m  5 ,  Section 1.8.4) 

over the  O-ring (only i f  required).  

Attention: The use of S.S. diaphragm may supply another 

poss ib le  source of e r r o r  i n  the measurement of the  t rue  

heat f lux through the test  sample; therefore ,  the use of 

the O-ring i s  recommended only i n  cases where the sample 

chamber pressure has t o  be o ther  than t h a t  of the b e l l  

jar a t  any t i m e  during the test .  

5. Lower slowly the  cold p l a t e ,  watching that the O-ring and 

the S,S. diaphragm s t a y  i n  place.  

6. Bolt the  cold p l a t e  t o  the sample chamber flange with a l l  

1 2  b o l t s .  Tighten a l l  b o l t s  evenly. 

7 .  Remove three  b o l t s  holding the  l i f t i n g  ears t o  the b e l l  

jar flange. 

8. Remove and s t o r e  the three  l i f t i n g  ears I (Figure 20). 

9. M a k e  sure the O-ring i n  the base p l a t e  i s  properly greased 

and located i n  the  groove. 

10. Lower slowly the b e l l  jar. 

Attention: Make sure  that 

a. the  b e l l  jar does not  hang on the  edge of the guard 

vesse l  neck; 

b. the b e l l  jar does not hang on the  t i p s  of the  b e l l  

jar guiding pins;  

the O-ring i n  the  groove of the  base p l a t e  i s  s t i l l  

properly loca ted  j u s t  before the  b e l l  jar touches it. 

c .  
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11. 

12 0 

13. 

14. 

15. 

16. 

17 .  

Bolt  the  b e l l  jar t o  the base p l a t e .  

evenly (Figure 19). 

Grease and replace the  2-inch I . D .  rubber sleeve over the  

guard vessel and b e l l  jar necks. 

Replace the  guard vesse l  neck enclosure,  f i t t i n g  i t  under 

the rubber sleeve placed i n  s t e p  12. The end of the  en- 

c losure  should be approximately 3/4 inch down ins ide  the  

sleeve . 
Replace a l l  th ree  m e t a l  clamps over the rubber sleeve. 

Make sure t h a t  the clamps are t i g h t  so t h a t  no gas can 

e n t e r  the b e l l  jar  o r  the  guard vessel. 

Replace four gum rubber sleeves over the  164-inch O.D. 

vent and f i l l  l i n e s  closing the gaps between the l i n e s  

and the  guard vesse l  neck enclosure.  

Swing the rubber tube support i n t o  i t s  proper pos i t ion .  

Attention: 

rubber tubings over t he  respective vent l i n e s  from the  

measuring and guard vesse ls .  

The u n i t  i s  assembled and ready fo r  evacuation. 

Tighten a l l  b o l t s  

Do not replace t h e . f o u r  1/4-inch O.D. gum 

1 . 7  TEST PROCEDURE 

1 . 7 . 1  Evacuation of the B e l l  3ar and Sample Chamber 

Before t h i s  procedure i s  s t a r t e d ,  a l l  of the s t e p s  i n  Sections 1.6.2 

and 1.7.6 must have been c a r r i e d  out. 

A t  the ou t se t  of t h i s  sequence, the vacuum system may be of f  com- 

p l e t e l y ,  i n  which case the  procedure as wr i t t en  below may be followed 

verbatum; o r  the high vacuum pumping s t a t i o n  and/or roughing pump may be 

operating, i n  which case the  s t e p s  that spec i fy  turning on a component 

t h a t  i s  a l ready  on may be ignored. 

1 .7 .1 .1  High Vacuum i n  the B e l l  Jar and the Sample Chamber 

1. Turn on the water t h a t  cools the d i f fus ion  pump on the  

high vacuum s t a t i o n  (see Sections 1.4.1 and 1.5.3). 

2. Turn on forepump on the high vacuum pumping s t a t i o n .  

42 



3.  

4. 

5. 

6. 

7. 

8. 

9 .  

10.  

11. 

1 2 .  

1 3 .  

Turn on roughing pump on the calorimeter (switch marked 

vacuum pump" i n  Figure 13). lf 

Turn on the  power switch a t  both thermocouple-ionization 

gauge con t ro l s  and switch them t o  read thermocouple gauges. 

(See Figure 13 ,  r i g h t  hand toggle switch i n  up pos i t ion ,  

l e f t  hand lower s e l e c t o r  switch on "TC-l".) 

Open the 2-inch ga te  valve marked "high vacuum" i n  Figure 16.  

Open slowly the 1-inch block valve marked "low vacuum" i n  

Figure 16. 

Attention: Make sure the block valve marked "vacuum vent" 

(Figure 16) i s  t i g h t l y  closed. 

When the pressure indicated on the forepump thermocouple 

gauge of the high vacuum pumping s t a t i o n  (Figure 19) i s  

below 25 microns, switch on power t o  the  d i f fus ion  pump. 

Wait one-half hour u n t i l  d i f fus ion  pump is  warmed up. 

I f  the  pressure indicated on the sample chamber thermocouple 

gauge is  below 50 microns, c lose  the 1-inch block valve 

marked "low vacuum" i n  Figure 16.  

Open the 4-inch ga te  valve on the high-vacuum pumping 

s t a t i o n  (see Figure 22). The pressure should drop below 

5 microns wi th in  1/2 hour, 

F i l l  cryo-baffle on the high vacuum system with l i q u i d  

nitrogen (Figure 19)  

Attention: R e f i l l  cryo-baffle as required during the test .  

Experience showed t h a t  the l i q u i d  s t ays  i n  the b a f f l e  f o r  

approximately 2 hours. 

Turn on ion iza t ion  gauges fo r  the sample chamber and the 

b e l l  jar ( fo r  s t e p s  i n  the procedure see the NRC i n s t ruc -  

t i o n  book supplied wi th  the calorimeter) when the cor re-  

sponding thermocouples show w e l l  below 5 microns. 

When the  pressure i n  the b e l l  jar  is below 5 x t o r r ,  

evacuation of t he  b e l l  jar and sample chamber i s  completed. 

It may take 1 t o  8 hours t o  reach t h i s  pressure ,  depending 

upon the  test sample  used and on t h e  c l ean l ines s  of the 

vacuum sys tern. 
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14. The calorimeter i s  ready fo r  l i q u i d  n i t rogen  t r a n s f e r  i n t o  

the guard and measuring vesse l s .  

1.7.1.2 High Vacuum i n  the B e l l  Jar and Pressure Other 
Than High Vacuum i n  the  Sample Chamber 

I n  order t o  maintain a pressure i n  the  sample chamber that is  inde- 

pendent of the pressure i n  the  b e l l  jar, a sealed diaphragm must be used 

t o  i s o l a t e  t he  chambers. (See Section 1 . 3 . 3  and s t e p  4 ,  Section 1.6.2.) 

Perform steps 1 through 13 as i n  Section 1.7.1.1. The sample chamber 

Close the 2-inch ga te  valve marked "high vacuum-sample is  then evacuated. 

chamber" i n  Figure 16. The des i red  gas a t  predetermined pressure may be 

introduced i n t o  the  sample chamber through the 1-inch block valve marked 

"vacuum vent" i n  Figure 16 .  

1 .7 .2  Adjusting of the  Warm P l a t e  Temperature (Follow i n  Figure 13) 

1. 

2. 

3.  

4 .  

5. 

6 .  

7.  

S t a r t  o i l  c i r c u l a t i n g  pump by f l i pp ing  toggle switch marked 

" o i l  pump". 

Place s e l e c t o r  valve marked "hot p l a t e  f l u id"  on "sample 

chamber I' . 
Place "bypass valve'' on "closed". 

Observe o i l  flow on the "o i l  flow" indica tor .  

I f  a warm p l a t e  temperature higher than room temperature i s  

des i red ,  set the thermostat placed over t he  o i l  ba th  t o  the 

required temperature. 

S t a r t  o i l  hea t e r  by f l i pp ing  switch marked "o i l  heater". 

(The l i g h t  next t o  the  switch should go on. 

temperature set on the  thermostat i s  reached, the ' l i gh t  

w i l l  b l ink .  ) 

Observe the  temperature i n  the warm p l a t e  on d i a l  thermo- 

meters marked "inrf and "out". 

When the 

1.7.3 F i l l i n g  the  Measuring and Guard Vessels with Cryogen 

Before t h i s  procedure i s  s t a r t e d ,  a l l  of the  s t eps  i n  Section 1 .7 .1 .1  

o r  1.7.1.2 and 1 .7 .2  must have been c a r r i e d  out. 
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1. 

2.  

3.  

4.  

5. 

6 .  

7. 

8. 

9. 

10. 

11. 

12 .  

1 3 .  

14. 

Connect one vent of the measuring vesse l  with one vent of 

the  guard vesse l  with shor t  pieces of 1/4-inch I.D. gum 

rubber tubing. Do the same with two o ther  vents,, 

Connect cryogen storage dewar with the f i l l  l i n e  of the 

guard vesse l .  

Open the valve on the storage dewar and start  t r ans fe r  of 

the cryogen. 

Stop t r ans fe r  when l iqu id  begins to  shoot from the measur- 

ing vessel  f i l l .  

Disconnect both pieces of gum rubber tubing placed i n  

s t e p  1. 

Disconnect the l i qu id  t r ans fe r  l i n e  from the f i l l  l i n e  of 

the guard vessel  and cap the f i l l  l i ne .  

Connect the l i q u i d  t r ans fe r  l i n e  t o  the f i l l  of the measur- 

ing vesse l .  

Open the valve on the storage dewar and start t r ans fe r  of 

the cryogen. 

Stop t r ans fe r  when l iqu id  begins t o  shoot from both measur- 

ing vessel  vents. 

Disconnect the t r ans fe r  l i n e  from the f i l l  l i n e  of the 

measuring vessel  and cap the f i l l  l i ne .  

L e t  both vesse ls  b o i l  fo r  1/2 hour. 

Repeat 2 and 3 .  

Stop t r ans fe r  of the l i qu id  when the l i q u i d  begins t o  shoot 

from both vents of the guard vesse l .  

Wait a few minutes, then open the t r ans fe r  valve slowly, 

allowing l i q u i d  t o  barely t r i c k l e  from the vents for  a 
few seconds, 

Attention: Prolonged exposure of the guard vesse l  neck 

t o  l i q u i d  nitrogen during t r ans fe r  may cause freezing of 

the 2-inch I.D. rubber sleeve on the guard vessel  neck, 

with subsequent loss  of vacuum. 

the rubber sleeve normally prevents the freezing. 

A hot air  gun turned on 
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1.7.4 Taking Data 

When the  t r a n s f e r  of cryogenic l i q u i d  i n t o  the  measuring vesse l  and 

guard vesse l  i s  complete, the  next t a s k  i s  t o  determine when thermal 

equilibrium has been e s t ab l i shed ,  both i n  the  sample and i n  the  cryogen, 

and t o  measure the  heat f lux  i n t o  the measuring vesse l  a t  that state. 

This i s  b e s t  accomplished by measuring the boi l -of f  rate continuously over 

a period of t i m e .  The boi l -of f  rate t y p i c a l l y  w i l l  be high a f t e r  i n i t i a l  

f i l l i n g  with cryogen, w i l l  decrease when excess heat from the sample and 

apparatus has been c a r r i e d  o f f ,  and w i l l  reach a steady rate when thermal 

equilibrium has been es tab l i shed .  In su la t ion  systems t h a t  have a low 

thermal conductivity,  such as evacuated powders , requi re  severa l  hours 

t o  reach equilibrium, while r e l a t i v e l y  poor in su la to r s ,  such as foams i n  

a i r ,  may s t a b i l i z e  i n  less than two hours. During t h i s  t i m e  it is  neces- 

s a ry  t o  maintain a constant pressure on the  l i q u i d  i n  the measuring vesse l  

t o  prevent e r r o r s  due t o  enthalpy changes. It i s  a l s o  necessary t o  keep 

the guard vesse l  pressure constant and near ly  the same as that i n  the 

measuring vesse l  i n  order t o  minimize temperature d i f fe rences  and hence 

heat t r a n s f e r  between them. The guard vesse l  pressure should, however, 

be s l i g h t l y  higher than the  measuring vesse l  p ressure ,  i n  order t o  avoid 

recondensation of the boil-off gas as it  passes by the  l i q u i d  i n  the guard 

vesse l .  We f ind  it convenient t o  maintain the guard vesse l  pressure wi th in  

plus 5 nnn minus 0 m of the  measuring vesse l  pressure.  

accomplished by pos i t ion ing  the  vent l i n e  discharge nozzle from the guard 

vesse l  higher o r  lower i n  the o i l - f i l l e d  graduate supplied f o r  t h i s  purpose. 

This t a s k  can be 

I f  reaching equilibrium takes more than six hours, the inves t iga to r  

i s  w e l l  advised t o  r e f i l l  the  guard v e s s e l ,  then, aga in ,  w a i t  f o r  e q u i l i b -  

r i u m  which normally would be reached i n  one to  two more hours. 

The length  of t he  da ta  taking period i s  e n t i r e l y  up t o  the  inves t iga tor .  

A s  a guide l i n e ,  we suggest a minimum of 2 hours with minimum of 4 da ta  

points taken during t h i s  t i m e .  For samples exh ib i t i ng  low hea t  f luxes ,  such 

as 1/2  t o  1-inch th i ck  evacuated powders, 6 t o  8 hour long tests ( a f t e r  equi- 

l ibrium is  reached) are recommended. 

A suggested form f o r  taking da ta  is given i n  Section 1.8.1. Table I 

i n  the same s e c t i o n  gives an  explanation'of the  nomenclature used on t h a t  
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da ta  form. Section 1.8.2 presents  a sample ca l cu la t ion .  The i n t e r v a l s  

a t  which t h i s  da t a  should be recorded depend upon the bo i l -o f f  rates ob- 

served. 

the d is tance  between the warm and the co ld  p l a t e s ,  which i n  most cases 

w i l l  be i d e n t i c a l  t o  the  sample thickness,  may be measured by gauging 

the d is tance  t h a t  the s tub  of t he  warm p l a t e  neck protrudes from the  

sample chamber neck (Figure 15). 

made a t  the  beginning and a t  the  end of each test .  

I n  case the phenolic spacers (see Section 1.4.6) are not used, 

We recommend that t h i s  measurement be 

1.7.5 Removal of the Cryogen from the Calorimeter and 
Warm-up Procedure 

This procedure should be followed a t  the completion of each test .  

1. 

2. 

3.  

4. 

5. 

6. 

7. 

8. 

9. 

Switch of f  both ion iza t ion  gauges. 

Turn both ion iza t ion  gauge cont ro ls  t o  read thermocouples. 

Disconnect a l l  four 1/4 I . D .  gum rubber tubings from the  

vent l i n e s  of the measuring and guard vesse l s  (Figure 19).  

Remove stoppers from the  f i l l  l i n e s  of the  measuring and 

guard vesse l s  and s l i p  them over one of the  vents for  

each vesse l .  

S l i p  s h o r t  pieces of gum rubber tubing over the  f i l l  l i n e s  

of the  measuring and guard vesse l s  t o  d i v e r t  the flow of 

the cryogen i n t o  a chosen d i r ec t ion .  

Pressur ize  both measuring and guard vesse l s  with nitrogen 

gas using the vents  which were l e f t  open i n  s t e p  2. (Do 

not exceed 10 psig.)  

Keep the pressure on both ves se l s  u n t i l  a l l  cryogenic l i q u i d  

i s  blown from both vesse ls .  

Reduce pressure t o  a few inches of water above atmospheric 

and cap a l l  i n l e t s  t o  the ves se l s  with rubber policemen. 

Attention: Rubber policemen w i l l  not permit a i r  and water 

condensation ins ide  the v e s s e l s ,  simultaneously providing 

a s a f e t y  valve should the pressure ins ide  the vesse l  i n -  

crease during warm-up cycle.  

Close a l l  vacuum valves leading t o  the b e l l  jar (4-inch ga te  

valve on the  high vacuum system, see Figure 22) and t o  the  
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10. 

11. 

12. 

13.  

14. 

15. 

16. 

1 7 .  

18. 

sample chamber (marked "high vacuum" and "low vacuum", i n  

Figure 16). 

Release the pressure on the hydraulic jack, permitt ing the  

warm p l a t e  t o  move down (observe pressure gauge shown i n  

Figure 16) .  

Adjust the pressure regula tor  on the n i t rogen  gas b o t t l e  

t o  below 1 psig.  

from the b o t t l e .  

Connect the b o t t l e  t o  the  valve marked "vacuum vent" 

(Figure 1 6 ) .  

Crack slowly the "vacuum vent" valve t o  break vacuum i n  

the b e l l  jar and the sample chamber. 

Observe f i r s t  the thermocouple gauge ind ica t ion ;  then the  

ind ica t ion  of the compound gauge (marked "sample chamber 

pressure" i n  Figure 13) u n t i l  sample chamber pressure be- 

comes atmospheric (0 on the compound gauge). 

Turn of f  both thermocouple-ionization gauge con t ro l s .  

Turn o f f  o i l  hea te r  but leave the  c i r c u l a t i o n  pump going 

i n  order t o  prevent freezing of the oil i n  the warm p l a t e .  

Turn of f  the o i l  c i r cu la t ing  pump approximately 2 hours 

a f t e r  the cryogenic l i q u i d  was blown out. 

L e t  the Calorimeter warm up f o r  a t  least  6 h w r s  (preferably 

overnight) before proceeding t o  disassemble i t  (see Section 

1.6.1) .  

Purge the supply l i n e  wi th  dry n i t rogen  

Note: I f  t he  next test  i s  planned t o  be run r i g h t  a f t e r  change of the  

sample,  we recommend t h a t  both the high vacuum pumping s t a t i o n  and the  

vacuum pump on the frame of the  calorimeter be allowed t o  run. 

1.7.6 Shutdown of the Vacuum Sys tem 

The system may be completely shut down o r  the  high vacuum pumping 

s t a t i o n  may be i s o l a t e d  and allowed t o  operate while t he  remainder of 

the system is shut down, 

1.7.6.1 Complete Shutdown 

Make sure  t h a t  s t eps  9 and 15 of Section 1.7.5 are performed. 
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1. Turn o f f  the switch marked "vacuum pump" i n  Figure 13;  t h i s  

c u t s  of f  the roughing pump mounted on the calorimeter frame. 

Vent the pump. 

Turn o f f  d i f fus ion  pump on the  high vacuum pumping s t a t i o n .  

Wait 1/2 hour and turn  of f  forepump of the high vacuum pump- 

ing s t a t ion .  

Bleed air  or  ni t rogen in to  the system by opening purge valve 

(Figure 22).  

2. 

3.  

4 .  

5. Valve of f  the water cooling t o  the d i f fus ion  pump, 

1 . 7 . 7  Stor inp of the Calorimeter 

I f  the  calor imeter  i s  t o  be inoperative fo r  a shor t  period of t i m e ,  

the  components should be arranged as follows: 

1. The b e l l  jar is  t o  be closed t o  a c t  as a dust  cover fo r  the 

cold p l a t e  and the vacuum space. 

2. All four vent and f i l l  connections t o  both vesse ls  i n  the 

cold p l a t e  are t o  be capped with hose policemen. 

3.  All valves t o  the b e l l  jar and sample chamber are to  be 

closed. 

4 .  A l l  e l e c t r i c a l  equipment i s  t o  b e  turned o f f .  

5. The b e l l  jar and sample chamber are t o  be f i l l e d  with ni t rogen 

gas.  

6 .  The pressure on the warm p l a t e  hydraulic jack i s  t o  be re- 

leased. 
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TABLE I EXPLANATION OF NOMENCLATURE 

Column 

1 

2 

3 

4 

7 

10 

11 

12 

13  

Symbol 

-- 
t 

V 

TG 

pB 

TC 

-- 

-- 

TW 

'BJ 

psc 

Uni t s  

h r  s : min 

h r  s 

3 cm3 o r  f t  

F 0 

t o r r  

F 0 

F 0 

F 0 

F 0 

t o r r  

t o r r  

F p s i  

-- mm H20 

Exp lana t ion 

Time of day f o r  reference.  

Tota l  elapsed time from beginning of 
the  run. 

Total  displaced volume indicated by 
w e t  tes t  meter i n  cubic f e e t  o r  by 
low boi l -of f  m e t e r  i n  cubic centimeters,  

G a s  temperature as indicated by a 
thermometer on the  w e t  test m e t e r  o r  
room temperature i f  low boil-off m e t e r  
i s  used. 

Barometric pressure a t  the time of the  
reading. 

Cold p l a t e  temperature, same as the  
boi l ing  temperature of the cryogen i n  
the  cold p l a t e .  

Temperature of o i l  on the i n l e t  s ide  
of the warm p l a t e ,  as indicated by a 
d i a l  thermometer (Figure 13). 

Temperature of o i l  on the o u t l e t  s ide  
of the warm p l a t e ,  as indicated by a 
d i a l  thermometer (Figure 13). 

Warm plate temperature , the average 
reading of four thermocouples embedded 
i n  the warm p l a t e .  

Vacuum i n  the b e l l  jar as indicated by 
the ion iza t ion  gauge con t ro l .  

Vacuum or  pressure i n  the sample chamber 
as indicated by the  thermocouple- 
i on iza t ion  gauge cont ro l  o r  by the com- 
pound d i a l  gauge. 

Mechanical compression on the  test 
eam6le applied by the hydraulic jack. 

Pressure over the  cryogen i n  the  mea- 
sur ing  vesse l  as indicated by the o i l  
manometer . 
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Column Symbol> Units 

14 -- mm H20 

15 L inch 

TABLE I (cont'd) 

Explanation 

Same fo r  the  guard vesse l .  

Distance between co ld  and warm plates 
( i n  most cases same as sample th ick-  
ness).  Ind ica ted  by the  thickness of 
the  phenolic spacers used o r  by the 
length  of the  warm p l a t e  neck protrud- 
ing below the O-ring gland. 
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1.8.2 Sample Calculations 

1. 

2. 

3. 

4. 

Remarks : 

O m i t  s t eps  2 and 3 i f  a w e t  test  meter indicat ing i n  cubic f e e t  

i s  used. 

For low boi l -off  meter only: 

Conversion of the  boi l -off  volume in to  cubic f ee t  

where: V [cm? - boi l -of f  volume (entry i n  Column 3) 
3 

V 2  = 2000 c m  ; V2 = 3.53 x l o m 5  x 2000 = 70.6 x los3 ft3 

= 200 cm3; V1 = 3.53 x x 200 = 7.06 x lo-’ f t  
v1 3 

For low boi l -of f  meter only: 

Height of the o i l  i n  the graduate a t  the time of the reading. 

Refer t o  Figure 23. 

HI = 16.74 inches 

H2 = 1.80 inches 

3 

3 
V1 = 200 cm 

V 2  = 2000 cm 

Pressure cor rec t ion  

a. For pressure drop i n  the w e t  t e s t  meter 

L1p [ t o r r  ] = - 25*4 h = 1.86h 
13.6 

where: 25.4 - conversion from inches t o  m i l l i m e t e r s  

13.6 - spec i f i c  grav i ty  of mercury 

h [inches] - pressure drop indicated by water manometer 

For the height of the o i l  i n  the graduate of the low bo i l -  

off  m e t e r  a t  the time of the reading 

on the  w e t  test  meter 

b. 

where: 0.8 - spec i f i c  grav i ty  of o i l  

13,6 - spec i f i c  g rav i ty  of mercury 
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FIGURE 23 HEIGHT OF OIL IN T H E  GRADUATE A T  V1=200 CM3 ; 
& V2= 2000 CM3 
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m 25.4 - conversion f ac to r  (-) inch 
H [nch o i g  - height of o i l ,  ca lcu la ted  i n  s t e p  3. 

H1 = 16.74 inches ;hpl =. 1.49 x 16.74 = 25.1 t o r r  

H2 = 1.:80 inches aP2 = 1.49 x 1.80 = 2.7 t o r r  

5. Reduction of the boi l -off  volume t o  the standard conditions 

(O°C and 760 t o r r )  

PB - aP 
X 

[ST f t3]  = V x 492 
'ST 

temperature pres  sure  
co r rec t  ion cor rec t ion  

3 - boil -off  volune i n  f t  ca lcu la ted  i n  s t e p  2 

where: T r F  FtY - boil -off  gas temperature (entry i n  Column 4) 

F o r d  - barometric pressure (entry i n  Column 5) 

AP [or3  - pressure cor rec t ion  explained i n  s t ep  4 
pB 

726.4 

ST f t 3  -3 492 751.5 - 25.1 6 , 2  10-3 
7 60 

749.3 

V = 7.06 x 10 460 + 79 

539 
ST1, 

-3 3 752*0 - 2'7 = 63.8 x 10 ST f t  -3 492 
7 60 V = 70.6 x 10 460 + 78 

ST2 

6. Calculat ion of the t rue  boi l -off  rate 

- v1 
;ST a t2 - tl 

where :  V2, V1 [ST ft3] - boil -off  volumes, Calculated i n  s t e p  5 

t2, tl fhrs] - elapsed t i m e  ( en t r i e s  i n  eolumn 2) 

= 63.8 x ST f t 3  t2 = 58/60 h r  v2 

v1 = 6.2 x ST f t  tl - 0 3 
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7. Heat f lux passing through the test  sample ( for  cold p l a t e  

a t  1 iquid ni t rogen temperature) 

6 [p] = 85.7 x 0.0781 x 6,, = 6.7 x GST 

Btu where: 85.7 - heat  of vaporization of one l b  of l i q u i d  
ni t rogen 

0.0781 - lb - densi ty  of l i q u i d  ni t rogen 
ST f t 3  

0 ST f t J  
h r  VST = .0596 

t rue  boi l -off  rate, calculated i n  s tep  6 

6 Btu Q 6.7 x .0596 = .399 hr 

8. Apparent thermal conductivity of the test sample 

where :  4 [E] - heat  f lux through the sample,  calculated 
i n  s t ep  7 

- thickness of the  sample (entry i n  Column 15) 

- area of the  measuring vesse l  i n  contact  with 
the test sample 

A = ,0642 f t  2 (h = 3-7/16 inch) 

- average temperature of the warm p l a t e  (entry 
TW 

Tc [OF] - temperature of the  cold p l a t e  (entry i n  
Column 6) 

0 2 Btu Q = -399 -; L = .297 inch; A = .0642 f t  hr 

TW = 112OF; Tc -320OF 

-3 Btu-in = 4.1 x 10 - .399 x .297 11 2 - 
.0672(112 + 320) F hr f t 2  1-320 432 
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9. Conversion of thermal conduct ivi ty  i n t o  var ious systems of 

measurement (see Table 11) 

= 1.44 4.1 -3 Btu-in 112 

(-320 F h r  f t  2 = 4.1 x 10 

-6 w a t t  

cm C 
6 x 1 0  

TABLE I1 CONVERSION FACTORS FOR THERMAL CONDUCTIVITY 

Btu-in Btu 

h r  f t 2  OF h r  f t  OF 

1 ,0833 
12 1 

2900 24 2 
693 57.8 

8.06 .672 

a -tal, w a t t  kg-cal.  

cm°C h r  m "C 

.000345 .00144 .124 

.00413 .0173 1.49 

2 0  sec cm C 

1 4.19 360 

.239 1 86 

.00278 ,0116 1 
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No. 

1 

- 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 2  

13 

14 

15 

1.8.3 Partial L i s t ing  of Purchased Components f o r  

The ADL ~ o d e l - 6  Calorimeter 

I t e m  

High Vacuum Pumping S ta t ion  

Vacuum Pump 

O i l  C i rcu la t ing  Pump 

Constant Temperature Bath 

Heating Elements 

O i l  Thermostat 

D i a l  Thermometers 

O i l  Flow Indica tor  

Hydraulic Jack 

Ioniza t ion  Gauge Adaptors 

Thermocouple-Ionization 
Gauge Control 

2-inch Gate Vacuum Valve 

1-inch Block Type Vacuum 
Valve 

Thermocouple Se lec tor  
Switch with Knob, Dial & 
Index P l a t e  

Compound Pressure Gauge 

Model o r  Type 

3305 

1402B 

3900 - 3/4 s i z e  

33937 - 30 gal 

TG-130, 3000 W ,  

240 v 

Type D5, Model 86, 
70°F - 370°F with 
Copper Thermal Unit ,  
S ty le  B 

2281, 5OoF - 300°F, 
2-1/2" s t e m  

63128-12 d'c.2235573, 
2 GPM 

R618 

1304 

7 10B 

1293 

1255 

31 -3 -0 -2 
2-13-0-2 
48-1 -0-9 

505s -30" -0 -151 
2-1/2" d i a l ,  
1/4 LM Conn. 

Supp 1 ier 

National Research 
Corp. 

The Welch 
S c i e n t i f i c  Co. 

Deming Pump Coo 

Dayton Co. 

Chromolox 

United E l e c t r i c  
Control 

Weston 

Fi  she r -P o r t e  r 

Black Hawk 

National Research 
Corp. 

National Research 
Corp. 

National Research 
Corp. 

National Research 
Corp. , 

Leads & Northrup 

U. S. Gauge Co. 
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Stem Model or Type Supplier - No 

16 Pressure Gauge 1000 p s i  Duragauge 0-1000 amp Ascroft Gauge Go. 

- 
733 dial 

17 D u a l  Manometer Special 

60 

F .  W, Dwyer 
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No. 

1 

2 

3 

4 

5 

- 

6 

7 

8 

9 

10 

11 

12 

13  

1 4  

15 

16 

1 7  

I t e m  

0 -Ring 

0-Ring 

0 -Ring 

0 -Ring 

S t a i n l e s s  S t e e l  
Diaphragm 

Black Pa in t  

Rubber Sleeve 

Ion iza t ion  Gauge 

Thermocouple 
Vacuum Gauge 

Thermocouple Wire 

O i l  

Vacuum O i l  

Vacuum O i l  

Bo1 t s 

Screws 

Bol t s  

Screws 

1.8.4 L i s t  of Spare P a r t s  

use - 
Base P l a t e  

Warm Plate Neck 

4" Flange 

Sample Chamber 

Sample Chamber 

Cold and Warm P l a t e  

Guard Vessel Neck 

B e l l  Jar, Sample 
Chamber 

Same 

Warm P l a t e  

Cons taqt Temperature 
Bath 

Diffusion Pump 

Low Boil-Off Meter & 
Forepump 3 
Sample Chamber Neck 

Warm Pla t e  

Sample Chamber 

Teflon Bearing 

Description 

12-1/2 I . D .  x 1/4 $ Neoprene 

2" I . D ,  x 3/16 $ Neoprene 

7-112 I , D .  x 1/16 $-Buna-N 

9-1/4 0 , D .  x 0.0015'' Thick 
f304 S t a i n l e s s  S tee l  

MMM #9564 Black 

2" I . D .  x 1/4" Thick x 
3" Long Natural Rubber 
Vacuum Hose 

NRC, Model 507 

NRC, Model 501 

!#36 (0.005" Dia.) 
Copper-Constantan 

300T Pacemaker Turbine O i l ,  
Ci t ies  Service O i l  Co. 

#704, Dow Corning Co, 

Super-X, Kinney Pump Co. 

5/16-18 NCT x 7/8 Long 
11304 S.S, Cap Hd. 

1/5-40 NCT x 2-1/8 Long 
F l a t  Hd. -Brass 

3/8-16 NCT x 1-1/2 Long 
1/304 S.S. Cap Hd. 

#lo-24 NCT x 7/16 Long 
1/304 S .S Round Hd. 
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U s e  - No. I tern 

18 Bol t s  B e l l  Jar 

- 

19 Tubing Manometer Lines & 
S leeve s 

20 Manometer Fluid  Manome te r 
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Description 

1/2-13 NCT x 1-3/4 Long 
#304 S .S . Cap Hd. 
1/4 I . D .  Gum Rubber Tubing 
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2.0 THE LINE HEAT SOURCE APPARATUS AND THE THERMAL CONDUCTIVITY PROBE 

The l i n e  hea t  source apparatus and the  thermal conductivity probe 

represent two experimental v a r i a t i o n s  of the same method f o r  measuring 

thermal conductivity of homogeneous and heterogeneous materials. 

general ,  the  theory of the  method can be applied equal ly  w e l l  t o  each 

apparatus,  provided the  assumptions used i n  the ana lys i s  apply t o  each 

experimental arrangement. 

d i f f e r e n t  forms. The l i n e  hea t  source is more f r a g i l e  and is designed 

pr imar i ly  fo r  the study of powders under various environmental conditions.  

The probe is a more rugged instrument s u i t a b l e  f o r  studying the  proper t ies  

of s o l i d ,  porous, and powdered materials. I n  the following discussion w e  

w i l l  (1) b r i e f l y  review the  h i s t o r i c a l  development of the probe and the 

l i n e  heat source, (2) discuss the t h e o r e t i c a l  background fo r  the  methods, 

(3) describe the apparatus constructed,  t e s t ed ,  and de l ivered  under t h i s  

study, and ( 4 )  provide operating in s t ruc t ions  f o r  the  apparatus. The 

similarities and d i f fe rences  between the  two approaches are indicated 

where p e r t i n e n t  t o  the uses of the instruments. 

I n  

The experimental apparatus usua l ly  take on 

2.1 HISTORICAL REVIEW 

The l i n e  hea t  source method w a s  suggested by Schleiermacher(6) i n  

The f i r s t  p r a c t i c a l  use of the 1888 and later by Stalhane and Pyk. (7) 

method w a s  by Van der  Held(8’ who used the  l i n e  hea t  source f o r  measuring 

the thermal conductivity of l i qu ids .  The l i n e  hea t  source method has a l s o  
been used f o r  measurement of the proper t ies  of i n su la t ing  materials. (9) 

We have used the  l i n e  hea t  source method a t  temperatures from -150 t o  

+15OoC t o  measure the  thermal conductivity of pos tu la ted  lunar  sur face  

materials. (lo) The l i n e  hea t  source method has the  advantages t h a t  it 

requires only s m a l l  q u a n t i t i e s  of sample, can be used wi th in  u l t r ah igh  

vacuum chambers, can be arranged s o  that a powder i s  deposited on the  a p -  

para tus  a f t e r  outgassing and o the r  treatments and requi res  only sho r t  

t i m e s  f o r  the experimental measurements. 

The f i r s t  thermal conductivity probe u t i l i z i n g  the p r inc ip l e s  of the  

l i n e  heat source method w a s  described by Hooper and Lepper. The 
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pr inc ipa l  use of  the  probe has been i n  the measurement of  the thermal 

proper t ies  of s o i l s .  (12’13214) 

f o r  study of i n su la t ing  materials, 

and deep sea sediments. (18) We have used the thermal conductivity probe 

fo r  s tud ie s  of powder, foam and s o l i d  rocks a t  temperatures from -150 t o  
+5OO0C. (19’20) The probe method has severa l  of the  advantages common t o  

the  l i n e  hea t  source method but i s  b e t t e r  adapted fo r  use with s o l i d  and 

foam materials o r  w h e r e  the use of the  l i n e  hea t  source i s  prohib i ted  by 

i t s  f r a g i l e  nature.  

Other i nves t iga t ions  have used the  probe 
(15’16) f o r  rocks and sand packs, (17) 

2.2 THEORETICAL CONSIDERATIONS 

2.2.1 The Line Heat Source 

The constant hea t  production by a l i n e  source of heat enclosed 

i n  an  i n f i n i t e  volume o f  materials produces a c y l i n d r i c a l  temperature f i e l d .  

The temperature rise a t  any poin t  i n  the material depends upon i t s  thermal 

conductivity.  For a l i n e  heat source of s t r eng th  q p e r  u n i t  l ength ,  the 

temperature, 
equation (21) 

where 

T ,  a t  a d i s t ance ,  r ,  from the source i s  given by the  

T =  

-E i 

and a i s  the  thermal d i f f u s  v i t y  of the material, k i s  the hermal 

conductivity,  and t i s  t i m e .  

T = 0;  t S 0,  r = ba, T = 0; and t 0 ,  r -9 0 ,  q = constant = -23rr k dT/dr. 

For small values of r /4at, corresponding t o  small d is tances  from the  source, 

l a rge  thermal d i f f u s i v i t i e s  o r  long t i m e ,  the  exponential i n t e g r a l  can be 

approximated by $0.5772 + I n  x ;  thus,  Equation 1 becomes: 

The boundary conditions are: t = 0,  r # 0 ,  

2 

r2 1 T = 43rk 1- 0.57d2 - I n  ~1 
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For temperature rises of T and T2 a t  t i m e s  t and t respec t ive ly ,  

Equation 3 gives: 
1 1 2’  

t 

(4) 

Thus, from the  temperature rise a t  two d i f f e r e n t  t i m e s  and from the 

s t r eng th  of t he  hea t  source,  the  thermal conductivity can be computed. 

A l t e rna t ive ly ,  a p l o t  of temperature rise versus logarithm of t i m e  should 

have a constant slope whose value i s  equal t o  q/4ak. 

W e  note t h a t  the  thermal conductivity values as evaluated by Equation 

4 do not depend upon the  values of r a t  whichmeasurements are made, nor 

on the thermal d i f f u s i v i t y ,  provided t h a t  the  values of r /4at are s m a l l .  

This i s  e spec ia l ly  important i n  experimental work, s ince  it i s  not neces- 

s a ry  t o  know p rec i se ly  the loca t ion  of the temperature measuring device. 

I n  many experimental arrangements, it i s  not  poss ib le  t o  w a i t  f o r  s m a l l  

values of r /4at t o  complete the  measurements o r  the e f f e c t s  of boundaries 

and heat leaks  become l a rge  before the values of r /4at are s u f f i c i e n t l y  

s m a l l  fo r  Equation 4 t o  be used. I n  t h i s  case ,  it is s t i l l  poss ib le  t o  

determine values of thermal conductivity (without knowledge of the m e a -  

surement r ad ius ) .  It can be seen from Equation l that the  temperature 

r i s e  a t  a poin t  i n  the ma te r i a l  i s  a function only of the hea ter  power 

p e r  u n i t  l ength ,  the thermal conductivity,  and a generalized dimensionless 

time function. 

t i o n  of the  thermal conductivity i n  terms of the  temperature rise a t  

severa l  times. A graphical method fo r  determining the  thermal conductivity 

from Equation 1 has been used i n  our previous work and w i l l  be d i s -  

cussed later. 

the  l i n e  heat source apparatus,  it w i l l  be necessary t o  use a graphica l  

procedure ins tead  of allowing s u f f i c i e n t  time f o r  Equation 4 t o  hold. 

2 

2 

2 

Hooper and Chang(14)have presented a monograph fo r  so lu-  

I n  most experimental measurements of evacuated powders wi th  

The above d iscuss ion  is  based upon measurements using an  idea l ized  

system; p r a c t i c a l  considerations r e s u l t  i n  d i f fe rences  from the above 

described model and accompanying e r r o r s  i n  measurement. The p r inc ipa l  

sources of e r r o r  i n  the  l i n e  heat source method are: (1) the e f f e c t s  of 

f i n i t e  hea te r  w i r e  diameter and length,  (2) the  e f f e c t s  of the diameter 
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and length of the  temperature sensor,  (3) the f i n i t e  s i z e  of the  sample, 

(4 )  v a r i a t i o n s  i n  hea ter  power and i n i t i a l  sample temperature, and 

6 )  contac t  r e s i s t ance  between the  sample and the  hea te r  w i r e  o r  tempera- 

t u r e  sensor. These sources of e r r o r  have been considered i n  d e t a i l  

elsewhere. ( lo) I n  the design of the  l i n e  heat source apparatus de l ivered  

under t h i s  con t r ac t ,  we have considered these sources of e r r o r  and design 

cri teria so as t o  reduce measurement e r r o r  t o  allowable l i m i t s .  Con- 

sc ien t ious  app l i ca t ion  of the  measurement technique suggested later should 

insure r e l i a b l e  and reproducible da ta .  

2.2.2 The Thermal Conductivity Probe 

The t h e o r e t i c a l  ana lys i s  of the thermal conductivity probe has 

proceeded along two similar methods: 

source theory and (2) ana lys i s  of a c y l i n d r i c a l  hollow probe. I n  the  

f i r s t  approach, we can consider the probe i t s e l f  (i.e.,  the  hea te r  por- 

t i o n ,  i n su la t ion ,  temperature sensor,  and sheath) as a l i n e  heat source. 

Equations 1 through 4 w i l l  then hold f o r  every poin t  wi th in  the material 

t o  be t e s t ed .  I n  p rac t i ce  it is  customary t o  monitor the temperature of 

the  material a t  some poin t  near the  probe, such as i n  a sheathed thermo- 

couple a t tached  t o  the hea ter  sheath. (17) I n  t h i s  case the  equations 

given above hold,  and the  thermal conductivity of the  powder may be 

found i n  the  same manner as when the  l i n e  heat source i s  used., Because 

the temperature sensor i s  o f t en  located only a ,small d i s tance  from the 

hea te r ,  only r e l a t i v e l y  s h o r t  experimental times are required f o r  the 

term r /4at t o  be s m a l l  so  t h a t  Equation 4 may be used i n  evaluating 

the mal conduc t i v i  t y  

(1) a n  extension of the  l i n e  hea t  

2 

I n  the  second approach, equations have been derLved f o r  the  tempera- 

t u re  a t  the  inner rad ius  of a hollow cyl inder  containing a l i n e  hea t  

source (22) 

and s p e c i f i c  hea t  are taken i n t o  account. 

the  temperature a t  the i n t e r n a l  rad ius  of a hollow probe i s  given by 

Blackwell as: 

The e f f e c t s  of f i n i t e  probe dimensions, thermal conductivity,  

The most general  equation f o r  

(22) 
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where 7 = at a and b are the i n t e r n a l  and ex te rna l  r a d i i  of the probe, 

H i s  the 

are the volumetric hea t  capac i ty  of the  probe and surrounding material, 

respec t ive ly ,  y i s  Euler 's  cons tan t ,  and A.,. and A are functions of the  2 
geometry and thermal proper t ies  of the probe only. I f  the  e f f e c t s  of 

f i n i t e  thermal conductivity and spec i f i c  heat of the probe are neglected,  

Equation 5 reduces to: 

"heat t r a n s f e r  coe f f i c i en t "  a t  the probe w a l l  > P I C 1  and PC 
b2' 

For s u f f i c i e n t l y  la rge  times, i.e., l a rge  values of 'I, Equation 6 reduces 

to: 

r 7 

It can be seen t h a t  Equation 7 i s  i d e n t i c a l  t o  Equation 3 ,  with the  ex- 

cept ion  of the  constant term due t o  the contac t  r e s i s t ance  a t  the  probe- 

sample i n t e r f ace .  Thus, the  simple l i n e  hea t  source theory i s  v a l i d  fo r  

the  probe f o r  long experimental times. 

the terms involving the  probe dimensions o r  s p e c i f i c  hea t s  are mul t ip l i ed  

by 1/7 so that t h e i r  influence becomes small fo r  l a rge  times.) 

mental p rac t i ce ,  probes are genera l ly  constructed so  t h a t  the e f f e c t s  of 

probe proper t ies  are reduced i n  r e l a t i v e l y  sho r t  times and the probe may 

be t r ea t ed  as a l i n e  hea t  source. 

d i f f u s i v i t i e s  it may be necessary t o  estimate some of the parameters i n  

Equation 6 o r  7 and use them i n  a n  i t e r a t i v e  technique t o  determine the  

thermal conductivity.  

(Note that i n  Equation 5 a l l  of 

I n  exper i -  

For materials with very low thermal 

The e r r o r s  encountered i n  the  probe method are s i m i l a r  t o  those ac-  

companying the  l i n e  hea t  source method; of p r inc ipa l  importance are f i n i t e  
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l ength  and diameter of t he  probe,contact r e s i s t ance  and sample s i z e .  

Several i nves t iga to r s  have discussed these  e r r o r s  (12'23) and s tud ie s  are 
now i n  progress i n  which these e r r o r s  are being evaluated more f u l l y .  

Examination of the e r r o r s  i nd ica t e s  that f o r  s m a l l  experimental t i m e s ,  the 

probe test r e s u l t s  devia te  from those predicted by l i n e  source theory be- 

cause of the f i n i t e  dimensions of the probe and the  contac t  r e s i s t ance .  

A t  very long times, the probe test r e s u l t s  deviate from those predicted 

from theory because of a x i a l  heat l o s ses  and the f i n i t e  sample s i z e .  

Between the  sho r t  and long time por t ions  w h e r e  devia t ions  occur, the 

probe test r e s u l t s  should be pred ic tab le  by Equation 1 o r  4. It is  de- 

s i r a b l e  t o  have the v a l i d  t i m e  por t ion  occur a t  r e l a t i v e l y  sho r t  exper i -  

mental t i m e s  and under conditions such that the logarithmic formulation 

(Equation 4) can be used. 

of these f ac to r s  i n t o  account; however, the  u l t imate  s u i t a b i l i t y  of the  

probe, the  experimental t i m e s  and the measurement e r r o r s  w i l l  depend t o  

some degree on the proper t ies  of the material being s tudied .  

(24) 

I n  the design of the probe, we  have taken some 

2.3 DESCRIPTION OF APPARATUS 

2.3.1 Line Heat Source Apparatus 

The l i n e  hea t  source apparatus c o n s i s t s  of p a r a l l e l  hea te r  and 

thermocouple wires, a support s t r u c t u r e ,  and a sample ' holder.  

shows the support s t r u c t u r e  and wires fixed wi th in  the sample holder. 

Figure 25 shows the  support s t r u c t u r e  and w i r e s  of an  almost i d e n t i c a l  

but s l i g h t l y  longer apparatus.  The support s t r u c t u r e  f o r  the hea te r  and 

thermocouple w i r e s  c o n s i s t s  of a s t a i n l e s s  steel base, 1" x 6" x 1/8". 

Four Pyrex g l a s s  supports have been a t tached  wi th  epoxy r e s i n  t o  1/16" 

holes d r i l l e d  i n  the  s t a i n l e s s  steel base. The supports are hook shaped 

and extend outward toward the  edges of the  base. 

i n su la t ing  seals are a t tached  t o  the  steel base approximately 1/2" from 

the  g l a s s  supports. 

A 0.001" diameter constantan hea te r  w i r e  i s  a t tached  t o  one p a i r  of 

Figure 24 

Four ceramic-metal 

g l a s s  supports w i th  epoxy r e s i n ,  The w i r e  i s  firmly a t tached  so as t o  

be t a u t  without undue s t r a i n .  The w i r e  continues from the  g l a s s  supports 

and i s  soldered t o  the  ceramic-metal binding posts.  The t o t a l  heater w i r e  
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length i s  8 inches; t he  supported l eng th  approximately 5-1/2", and each 

end loop (between the  g l a s s  supports and the  binding pos ts )  i s  approxi- 

mately 1 -1/8" long. A 0.001" diameter iron-constantan thermocouple i s  

placed p a r a l l e l  t o  and spaced approximately 3/64" from the  hea te r  w i r e  

and is  supported by the second set of g l a s s  posts.  Both w i r e s  are ap- 

proximately 1/4" above the  steel base. The "end loops" of the  thermo- 

couple w i r e s  are approximately 1-1/8" long, the w i r e  l ength  between the 

g l a s s  supports i s  approximately 5 -1/2". 

junction was  made by placing the  two wires next t o  each o the r ,  s i l v e r  

soldering the junction, and trimming o f f  the  excess w i r e .  Heater w i r e  

leads 0.015" stranded copper w i r e ,  approximately 18" long are a t tached  

t o  the binding posts.  

long, w e r e  a t tached  t o  the  binding posts.  The t o t a l  e l e c t r i c a l  resist- 

ance of the  hea ter  and leads  i s  177.75 ohms. The r e s i s t ance  of the  lead 

w i r e s  i s  less than 1% of the  t o t a l  r e s i s t ance .  An iron-constantan thermo- 

couple was  chosen t o  reduce a x i a l  heat l o s ses  ( i ron  has a thermal conduc- 

t i v i t y  less than 1/6 of copper). 

and thermocouple wires are chosen on the  bas i s  of previous experience 

with the l i n e  heat source apparatus i n  which it w a s  shown that axial 

heat flow and o ther  e r r o r s  are s u b s t a n t i a l l y  reduced using t h i s  con- 

f igura t ion .  ('') 

f r a g i l e .  They should never be handled d i r e c t l y ,  samples should be de- 

posited on them wi th  c a r e ,  and the apparatus should be k e p t  i n  a moisture- 

f r e e  environment. 

The iron-constantan thennocouple 

Heavier No. 36 thermocouple lead wires, about 36" 

The length and diameter of the  heater 

Although the w i r e s  are posit ioned fi*ly, they are qu i t e  

The sample holder f o r  the l i n e  heat source i s  shown i n  Figure 24 and 

a n  engineering drawing is  given i n  Figure 26. 

from a copper block; holes were bored along the w a l l s  and base f o r  cool- 

ing passages. 

was  a t tached  t o  the  entrance and e x i t  p o r t s  of the  holder. 

heating f l u i d  can be passed through t h e  w a l l s  and base of t he  holder t o  

bring the  samples t o  the  des i red  temperature. The sample holder w a s  
n icke l  p l a t ed ,  then chromium flashed, t o  seal and maintain the condition 

of the copper and t o  reduce outgassing. 

be connected by flanges t o  "pant legs" f o r  the. feedthroughs of the  base 

The holder w a s  machined 

The cooling passages w e r e  connected and 1/4" copper tubing 

A cooling o r  

The ends of the  copper tubes can 

71  



t 

f 
-1% 

n 

d 
W 
IJ 
0 
3: 
W u 
d 
3 
0 

a 

m 

72 



p l a t e  and b e l l  jar assembly described later. 

chamber, the  copper tubes can be a t tached  d i r e c t l y  t o  high vacuum feed- 

throughs. The s t a i n l e s s  steel base holding the  hea te r  and thermocouple 

w i r e s  can be a t tached  t o  the  sample holder by two screws. 

For use i n  the  high vacuum 

2.3.2 Thermal Conductivity Probe Apparatus 

The thermal conductivity probe is shown schematically i n  Figure 27. 

The b i f i l a r  c o i l  i s  wound wi th  0.0031" diameter Teflon-coated constantan 

wire. The r e s i s t ance  of the  hea te r  w i r e  and leads  i s  213.96 ohms. The 

c o i l  l eng th  is  approximately 4-13/16 inches. 

coated copper-constantan thermocouple (welded j o i n t )  i s  in se r t ed  wi th in  

the c o i l  and a t  i t s  midpoint. The probe is  f i l l e d  w i t h  epoxy r e s i n  (Epon 

828, DMP-30, and methyl Nadic anhydride mixture) which was cured a t  ap- 

proximately 100 C.  The ou te r  sheath of the  probe i s  type 304 s t a i n l e s s  

steel 0.049" O.D., 0.037" I . D .  

shaped holder i n  which the  smaller heater wires are connected t o  copper 

leads.  The thermocouple leads  w e r e  continuous f o r  severa l  f e e t  of length.  

The bottom and the top of the probe are f i l l e d  wi th  Toroseal, a low vapor 

pressure epoxy r e s i n  manufactured by Varian Associates.  

of the probe ( fo r  use i n  ca l cu la t ions )  i s  4-13/16 inches. 

probe w i t h  epoxy r e s i n  prevents poss ib le  outgassing due t o  leaks  i n  the 

probe sheath and therefore  e l imina tes  the  p o s s i b i l i t y  of i n t e r n a l  contac t  

r e s i s t ances  wi th in  the probe. U s e  of Toroseal f o r  the  ends a l s o  reduced 

outgassing of the probe. This type of probe has been used i n  our previous 

s tud ies  and found t o  give s a t i s f a c t o r y  r e s u l t s  i n  both atmospheric pressure 

and vacuum environments. 

A 0.0031" diameter Teflon- 

0 

The top of the probe c o n s i s t s  of a cone- 

The heated length  

F i l l i n g  the  

The probe sample holder cons i s t s  of a copper sheet formed i n t o  a 

cy l inder  4-3/4" I , D ,  and 6-5/8" high. One-quarter inch copper tubing has 

been silver soldered t o  the w a l l  and bottom of the  sample container;  l egs  

have been provided t o  maintain clearance between the bottom of the sample 

container and the base p l a t e .  A copper l i d  can be a t tached  t o  the holder 

by wing nuts.  

means f o r  extending t o  the outside a vacuum chamber. The sample holder 

has been n icke l  p l a t ed  and given a d u l l  chromium f i n i s h  t o  reduce outgassing,, 

The copper tubing can be a t tached  t o  pant l e g s  o r  o ther  

73 



Heater 

"Tor o - 

"Epon" 

Leads * 

Seal" R 

' Plastic 

,Thermocouple Leads 

Stainless Steel End Piece 

Stainless Steel Sheath 
0.049" OD; 0 006" Wal l  

Bifilar Heater Coil - 
0.0031" Teflon Coated 
Constantan W i r e  

Copper Constantan 
Thermocouple Junction - 
0.0031" Diameter W i r e  

"Toro-Seal" 
Resin 

- 

FIGURE 27 SCHEMATIC DIAGRAM OF THERMAL CONDUCTIVITY PROBE 
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Holes i n  the  conta iner  provide passages f o r  evacuation. 

a photograph of the probe and the  sample holder. 

cup, approximately two inches diameter has been provided for  holding 

powders where sample volumes are l imi t ed .  

cup and the  copper sample holder may be f i l l e d  with aluminum beads (or 

o ther  material) t o  provide good thermal contac t  between the sample and 

the temperature cont ro l led  copper conta iner .  The copper tubing leads  

should be a t tached  t o  a thermosta t ica l ly  cont ro l led  o i l  ba th  o r  o the r  

heating o r  cooling system. 

Figure 28 is  

A small brass  screen 

The space between the  screen 

2 . 3 . 3  Base P l a t e  and B e l l  Jar Assembly 

A base p l a t e  and b e l l  jar assembly were supplied as the environmental 

chamber f o r  l i n e  hea t  source and probe measurements. 

approximately 14" diameter with a 4" p o r t  d r i l l e d  i n  the cen te r ,  w a s  used. 

An elbow wi th  a 4" flange w a s  welded t o  the base p l a t e  s o  that it could 

be a t tached  t o  the 4" pumping system provided with the cold p l a t e  appara- 

t u s .  

a l s o  supplied. 

tained th ree  vacuum seals: (1) a Conax type TG-20-A-6 six-wire feedthrough 

fo r  the  hea te r  and thermocouple w i r e s  of the l i n e  hea t  source and probe 

and (2) two compression type seals (NRC 1313) f o r  the pant l e g s  of t he  c i r cu -  

l a t i o n  system. 

29. 

checked using the 4" pumping system. 

A steel base p l a t e ,  

A standard 12" diameter Pyrex b e l l  jar wi th  a w i r e  mesh s h i e l d  w a s  

I n  add i t ion  t o  the  main pumping p o r t ,  the base p l a t e  con- 

The base p l a t e  assembly is  shown schematically i n  Figure 

The base p l a t e  assembly w a s  n icke l  p la ted ,  chromium flashed and l e a k  

2 . 4  - INSTRUMENTATION 

Instrumentation fo r  the  l i n e  hea t  source and thermal conduct iv i ty  

probe apparatus w a s  no t  supplied as p a r t  of t h i s  con t r ac t .  

mentation ava i l ab le  a t  the  Research P ro jec t s  Laboratory, when properly 

connected and the ground loops eliminated, should be adequate fo r  the  

measurements. 

The i n s t r u -  

The instruments required f o r  measurement wi th  e i t h e r  the l i n e  heat 

source o r  probe include: 

meter wi th  standard c e l l  and a u x i l i a r y  ba t t e ry ,  a galvanometer o r  nullmeter 

f o r  use wi th  the K-3 potentiometer, a double pole-double throw kni fe  switch 

a regulated d.c. power supply, a K-3 potent io-  

75 



FIGURE 28 THERMAL CONDUCTIVITY PROBE AND SAMPLE 
HOLDER 
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14" Diameter Base Plate 7 

N.R.C. #1313 
a 3/8 - 1/2 Rubber 

/ 4" Flange - 

+ 12" x 12" Pyrex Bell Jar 

4" Flange 

+-Rubber Gasket 
I. 

Note: Not Shown-Conax #TG-20-A-6 Fitting for Power & T.C.  Wires. 

FIGURE 29 SCHEMATIC DIAGRm OF BASE PLATE ASSEMBLY 
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(a s ing le  pole-double throw switch may be used wi th  a n  a l t e r n a t e  wiring 

system), a microvolt ampl i f i e r  and recorder (a combination that w i l l  

give f u l l - s c a l e  chart reading of 100 microvolts w i l l  be des i r ab le ) ,  an 
accurate voltmeter and ammeter, a thermocouple reference junction, and 

a t i m e r  t o  check t h e  chart speed. I n  add i t ion ,  a decade r e s i s t o r  box 

wi th  a capac i ty  of 1000 o h s  (0.1 t o  1000) w i l l  assist i n  s e t t i n g  the  

power supply. Figure 30 shows the  general  instrumentation diagram f o r  

hooking up e i t h e r  the probe o r  the l i n e  hea t  source. 

method f o r  a t t ach ing  the  thermocouple c i r c u i t  t o  the  potentiometer and 

recorder -amp1 i f  ie r . 
Figure 31 shows the  

U 

A pr inc ipa l  problem i n  the  instrumentation i s  reduction of system 

noise and e l imina t ion  of the  e f f e c t s  of ground loops. 

s p e c i f i c  rules f o r  reducing these e f f e c t s  , however, general  good i n s t r u -  

mentation p rac t i ce  should su f f i ce .  The hea te r  and thermocouple wires 

should be sh ie lded ,  any thermocouple junctions should be kept a t  constant 

temperature and in su la t ed  from air  cu r ren t s ,  the  recorder and ampl i f ie r  

should be shielded from any high magnetic o r  e l e c t r i c  f i e l d s .  

upon the type of instruments (recorder and ampl i f ie r )  ava i l ab le  and the 

impedances of the  thermocouple c i r c u i t ,  modifications of the  components 

may be required t o  increase the  s e n s i t i v i t y  and time response of the 

recording system. 

of improving the c i r c u i t  t o  the poin t  where noise  is  kept below one micro- 

v o l t  and the  recorder response i s  s u f f i c i e n t l y  rap id  t o  achieve accura te  

temperature rise measurements. 

There are no 

Depending 

A competent instrumentation engineer should be capable 

During the i n s t a l l a t i o n  of the apparatus,  instrumentation ava i l ab le  

a t  the Research P ro jec t s  Laboratory was set up f o r  demonstration tests. 

This set-up i s  typ ica l  of t h a t  required fo r  accura te  measurements; re- 

duction of noise and the  e f f e c t s  of ground loops and improving the  im- 

pedance match of the components w i l l  improve the  q u a l i t y  of the  exper i -  

mental data.  

2.5 OPERATING INSTRUCTIONS 

2.5.1 L i n e  Heat Source Apparatus 

The following i n s t r u c t i o n s  descr ibe  the procedure t o  be followed i n  

the normal operation of t h e  l i n e  hea t  source. 
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Probe 

Galvanometer 

1 

Null Meter 
or 

Recorder Galvanometer Battery 

v.d.c 

J. Kaye 

Standard 
C ell 

Galvanometer - 

K-3  Potentiometer 

FIGURE 31 THERMOCOUPLE WIRINd DIAGRAM FOR PROBE OR LINE 
HEAT SOURCE 
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A. P r e t e s t  Checkout 

1. P r i o r  t o  t e s t i n g  examine the l i n e  hea t  source apparatus t o  

insure good condi t ion  and t a u t  pos i t i on  of the  wires. 

2. Check the  electrical con t inu i ty  of t he  thermocouple and 

heater w i r e .  

3. Check sample holder t o  remove any fore ign  material and check 

f l u i d  passages t o  insure the absence of leaks.  

B. Equipment Assembly and Sample Loading 

1. Attach the base p l a t e  assembly t o  the pumping po r t  of t he  

vacuum sys t e m  . 
2. Place the l i n e  heat source sample holder on the base p l a t e  

assembly (or o ther  l oca t ion  t o  be used). 

3. Attach the  c i r c u l a t i n g  f l u i d  tubes t o  the  couplings i n  the 

"pant leg" seal assemblies; a t t a c h  the  o ther  ends of the  f l u i d  feed tubes 

t o  the des i r ed  temperature cont ro l led  ba th  (e.g., co ld  w a t e r  t ap ,  auxil- 

i a r y  o i l  ba th  po r t s  on ca lor imeter ) .  Change washers, f l a r e  f i t t i n g s  and 

rubber gromets as required t o  insure t i g h t  connections. 

4 .  Carefu l ly  pos i t i on  the l i n e  heat source base and w i r e s  i n  

the  sample holder with the screws provided. Attach the i r o n  and constan- 

t a n  thermocouple w i r e s  and copper hea te r  leads  t o  the' appropriate terminals 

i n  the  Cohax 6-wire feedthrough ( s o f t  so lder  o r  good mechanical j o i n t s  w i l l  

s u f f i c e  under most conditions).  Tighten Conax f i t t i n g  i f  required.  

5. Check to insure  t h a t  t he re  i s  no electrical connection between 

the hea te r  o r  thermocouple leads  and the  base p l a t e  o r  sample holder.  

6. Carefu l ly  f i l l  the  sample holder wi th  the sample of the  de- 

N o  voids should be formed i n  the holder and the 

The 

s i r e d  s i z e  and density.  

hea t e r  and thermocouple should be covered as uniformly as possible.  

wires should be covered with a t  least 3/8" of sample. 

sample i s  not a v a i l a b l e ,  cover only the  c e n t r a l  3-inch por t ion  of the 

apparatus wi th  the material to be measured and cover the  outer  por t ions  

with a s i m i l a r  powder. 

I f  s u f f i c i e n t  

7. Place the b e l l  jar and rubber gasket on the base p l a t e  as- 

sembly using the appropr ia te  s ea l an t .  
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C. 

1. The sample environment should be e s t ab l i shed  a t  the des i red  

conditions of gas pressure and temperature by means of con t ro l  of the 

vacuum system and the  temperature bath. I n i t i a l  pumpdown ( i n  the range 

from atmospheric t o  several t o r r )  should be slow t o  avoid movement of 

the sample. 

2. When the  des i red  gas pressure and sample temperature are 

reached, as measured by the  vacuum gauges and the  thermocouple, t he  sample 

should be allowed t o  remain u n t i l  pressure and temperature equilibrium is  

reached. 

12 hours o r  longer a t  reduced pressures.  

This w i l l  normally be from 1/2 hour a t  atmospheric pressure t o  

D. Checkout of Instrumentation (To be c a r r i e d  out  a f t e r  A and B) 

1 Check a l l  recorder ,  potentiometer, thermocauple and hea te r  

w i r e  connections 

2. Standardize the K-3 potentiometer. Check span on recorder 

and t i m e  response and noise l e v e l  of amplifier-recorder system. Es t ab l i sh  

c h a r t  speed of recorder.  Check operation of re ference  junction. 

3. T e s t  proper functioning of power supply, v o l t  and ammeters, 

and switches but do not apply a voltage t o  the hea te r  w i r e .  

E. Thermal Conductivity Tests 

1. Measure i n i t i a l  temperature of the  sample ( a f t e r  t he  system 

has come t o  thermal equilibrium) using K-3 potentiometer and nullmeter 

o r  galvanometer. (K-3 should be standardized pe r iod ica l ly . )  

Se t  decade r e s i s t ance  box a t  a value corresponding t o  the 2. 

r e s i s t ance  of the l i n e  hea t  source; set the power supply so  t h a t  the  

voltage w i l l  be appl ied  t o  the ex te rna l  r e s i s t o r  (not t he  l i n e  source 

hea ter  w i r e ) .  

t o  l e v e l s  which w i l l  give a des i red  temperature rise i n  the  sample.  

(In genera l ,  the vol tage  and cu r ren t  levels w i l l  be determined by previous 

experience. It i s  normally des i red  t o  have temperature rises of 2-10 C-- 

as measured by the  thermocouple--during the 5 t o  60 minute test period. 

Estimates of the  power required can be made by using Equation 1 wi th  

Turn on the power supply, ad jus t ing  the cu r ren t  and voltage 

0 
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appropriate  assumed values of thennal proper t ies  and geometrical factors,, 

When i n  doubt as t o  the power t o  use,  start with very s m a l l  appl ied vol tages  

and increase t h e m  u n t i l  the  des i red  temperature rises are obtained. 

under vacuum condi t ions should always be ca r r i ed  out  a t  lower power 1 

than tests a t  atmospheric pressure .) 

3. Allow power supply t o  come t o  steady operat ing condi t ions.  

Turn on ampl i f ie r  and recorder and allow t o  warm up. 

4 .  Recheck and record the temperature reading of thermocouple. 

The thermocouple switch should be i n  pos i t i on  t o  read temperature d i r e c t l y .  

S t a r t  the recorder chart dr ive , ( speeds  of 1" per minute are adequate fo r  

most tests), move the thennocouple switch t o  the recorder posi t ion.  Ob- 

serve the temperature trace on chart--the temperature should not  change 

by more than + 3 microvolts over a lO-minute period. - 

by using 

t h a t  the 

recorder 

rec orde r 

the s t e p  

5. When temperature i s  s teady,  reset recorder pen trace t o  zero 

the  K-3 potentiometer. 

6. 
vol tage is appl ied t o  the l i n e  heat  source. Ind ica te  on the 

chart the loca t ion  a t  which the power i s  turned on. m e n  the 

pen reaches f u l l  s ca l e  de f l ec t ion ,  reset the  pen t o  zero using 

switch on K-3 potentiometer (or o ther  predetermined movement of 

When condi t ions are again s teady,  move the power switch so 

vern ier  s ca l e  on K-3). 

7. Record the vol tage appl ied t o  the hea ter  w i r e  and the hea te r  

w i r e  cur ren t .  Check the value severa l  t i m e s  during the  test. 

8. Observe the recorder c h a r t  t o  note any abrupt changes. Re-  

cord sample pressure ,  heat ing o r  cooling f l u i d  temperature@, recorder 

cha r t  speed and o ther  pe r t inen t  i d e n t i f i c a t i o n  data .  

9 .  Continue test f o r  s u f f i c i e n t l y  long dura t ion  so that the 

rate of rise of temperature is very small--durations of 10 minutes fo r  

unevacuated materials and 60 t o  80 minutes f o r  evacuated materials should 

be s u f f i c i e n t  

10. Shut o f f  power t o  hea ter  w i r e ,  The cool ing of the sample, 

f o r  a time equivalent  t o  the heated time, may be recorded and used t o  

check the heating data .  This is  not  e s s e n t i a l  t o  the ca l cu la t ions  o r  

measurement. 
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11. Allow the  sample t o  come t o  temperature and pressure e q u i l i b -  

rium before repeating tests. 

F. Data Reduction 

1. The da ta  on the  c h a r t  recorder gives the temperature rise 

( i n  terms of thermocouple output) as a function of t i m e ,  

be converted t o  a temperature rise-time form, 

from the  known o r  c a l i b r a t e d  output of the  iron-constantan thermocouple. 

For approximate r e s u l t s  , the handbook values of emf versus temperature 

for  iron-constantan thermojunctions should be used. For more accura te  

work, the  thermocouple junction should be c a l i b r a t e d  (p r io r  t o  tests) t o  

determine i t s  output i n  the temperature range of t he  measurement. A 

Beckman thermometer o r  a vapor pressure thermometer i s  usefu l  $0 e s t a b l i s h  

the  c a l i b r a t i o n .  It should be remembered t h a t  t he  absolu te  temperature 

l e v e l  is not important i n  the ca l cu la t ions ;  the temperature rise wi th  

t i m e  above the  i n i t i a l  value i s  the  important value. 

This da t a  should 

This can be accomplished 

2. Having e s t ab l i shed  the r e l a t ionsh ip  between temperature and 

t i m e ,  a p l o t  of temperature rise versus logarithm of time should be made. 

For samples a t  r e l a t i v e l y  high thermal conductivity,  t h i s  type of p l o t  

w i l l  be l i n e a r  f o r  a considerable time por t ion ,  wi th  departures from 

l i n e a r i t y  a t  very s m a l l  t i m e s  (less than 1 /2  minute) and a t  longer t i m e s  

(grea te r  than 5 t o  10 minutes). 

curve w i l l  probably not be observed, except a t  l a rge  experimental times. 

I f  i t  i s  e s t ab l i shed  that the curve i s  l i n e a r  f o r  a s u b s t a n t i a l  por t ion ,  

draw the b e s t  s t r a i g h t  l i n e  through the curve. 

For samples wi th  low conductivity a l i n e a r  

3.  The hea te r  power per u n i t  length can be determined from the 

product of the  cu r ren t  times vol tage ,  cor rec ted  f o r  any r e s i s t ance  i n  

the lead w i r e s ,  divided by the  given t o t a l  hea t e r  w i r e  l ength ,  

4 .  From the s t r a i g h t  l i n e  por t ion  of the  temperature-logarithm 

t i m e  response, the  thermal conduct iv i ty  may be ca lcu la ted  from Equation 4 

using any corresponding times and temperature rises. 

5 .  I f  a l i n e a r  r e l a t ionsh ip  is  not c l e a r l y  e s t ab l i shed ,  the 

experimental data should be p lo t t ed  as logarithm of temperature versus 

logarithm t i m e .  The experimental curve should be "matched" wi th  a 
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previously constructed p l o t  (on the same scale coordinate paper) of  

I n  -Ei(-l/k) versus  I n  1/x. 

of the graphs parallel during the  matching. 

the g r e a t e s t  segment of the experimental data coincides wi th  the  t h e o r e t i c a l  

curve. When the curves are matched, determine the temperature rise which 

corresponds to  a value of - E i  (-l/x) of u n i t y  and c a l l  t h i s  temperature 'JY. 

The thermal conductivity i s  obtained from the  equation: 

It i s  necessary t o  keep the  coordinate axes 

The curves are matched when 

where q i s  the hea te r  power per  u n i t  l ength  as determined i n  s t e p  3. The 

curve matching should be t r i e d  severa l  t i m e s  t o  check on the value of T*. 
6. Experience w i l l  determine which method g ives  the  most r e l i a b l e  

thermal conductivity r e s u l t s .  I n  genera l ,  samples wi th  low thermal con- 

d u c t i v i t i e s  w i l l  r equi re  the  ''curve matching method". 

apparatus should work bes t  with evacuated samples wi th  low thermal conduc- 

t i v i t i e s  r a t h e r  than with samples a t  atmospheric pressure.  

The l i n e  hea t  source 

2.5.2 Thermal Conductivity Probe Apparatus 

The operating in s t ruc t ions  f o r  the  probe are s imi l a r  t o  those fo r  t he  

l i n e  heat source apparatus.  

A. Pretest  Checkout 

1. P r i o r  t o  tes t ,  examine the probe t o  determine any apparent 

breaks i n  the lead wires o r  t o  remove any fore ign  material, 

2. Check the  e l e c t r i c a l  con t inu i ty  of the hea ter  and thermo- 

couple wires. 

sheath and any of the  probe lead w i r e s .  

3.  Check sample holder t o  insure aga ins t  l eaks .  

There should be no e l e c t r i c a l  con t inu i ty  between the  probe 

B. E 3  

1. Place the  sample holder on the base p l a t e  assembly. Attach 

the f l u i d  flow tubes i n  a manner similar t o  t h a t  described fo r  t he  l i n e  

hea t  source. 
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2. Attach the  heater and copper-constantan leads t o  the  appro- 

priate terminals i n  the Conax 6-wire feedthrough as described e a r l i e r .  

3. Check t o  insure t h a t  there  i s  no e l e c t r i c a l  con t inu i ty  be- 

tween the hea ter  and thermocouple leads and the base p l a t e .  

4 .  Place the  sample i n  the sample holder.  U s e  the brass  screen 

and aluminum beads i f  s u f f i c i e n t  sample i s  not ava i l ab le .  Place the  sample 

chamber l i d  over the probe o r  probe lead w i r e s ,  

5. Carefully i n s e r t  the  probe i n t o  the  c e n t e r  of t he  sample (a 
sample radius of a t  least 1" around the  probe should be provided). 

a powder material it is s u f f i c i e n t  t o  gen t ly  push the  probe i n t o  the sample. 

For a r i g i d  sample it i s  necessary t o  d r i l l  a hole i n  the sample, s l i g h t l y  

smaller than the  probe and then i n s e r t  the  probe as a press  f i t  i n t o  the 

hole. An a l t e r n a t e  technique i s  t o  d r i l l  a s l i g h t l y  oversized hole (e.g., 

0.010 t o  0.020" l a r g e r ) ,  f i l l  the hole wi th  mercury o r  o the r  high conduc- 

For 

t i v i t y  contacting material, and place the probe i n  the  hole,  displacing 

some of the contac t  f l u i d .  The narrow por t ion  of the  probe should be 

f u l l y  in se r t ed  i n  the sample.  Do not use mercury as a contact agent i f  

tests are t o  be conducted i n  vacuum. 

6. Close the sample conta iner  and place the  b e l l  jar and gasket 

on the base p l a t e ,  

C .  Establishment of Sample Environment 

The sample environment i s  e s t ab l i shed  i n  the  same  manner as described 

for  the l i n e  heat source apparatus.  

D. Checkout of Instrumentation 

The checkout of instrumentation is  the  same as described above fo r  

the l i n e  hea t  source apparatus.  

E.  Thermal Conductivity Tests 

The tes t  procedure using the  probe apparatus is i d e n t i c a l  wi th  that 

of the  l i n e  heat source with severa l  exceptions. 

1. The r e s i s t ance  box should be set a t  a value corresponding t o  

the probe r e s i s t ance .  
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2. The hea te r  power required t o  obta in  des i red  temperature rises 

can be estimated from previous experience o r  from Equation 5 wi th  appro- 

p r i a t e  values of thermal p rope r t i e s  and probe dimensions. The  higher the 

thermal conduct iv i ty  of the  sample, t he  higher the  power t o  be applied t o  

the hea te r  t o  obta in  a 2-10°C rise during the test  time. 

3. The test  dura t ion  fo r  the probe w i l l  genera l ly  be less than 

For higher conductivity for  the l i n e  heat source f o r  the  same material. 

samples such as s o l i d  o r  porous rocks a t  atmospheric pressure experimental 

times of only about 5-8 minutes are required.  

r ia ls ,  30-50 minutes should be adequate. 

For low conductivity mate- 

F. Data Reduction 

Data reduction methods f o r  the thermal conductivity probe are iden t i ca l  

t o  those of the l i n e  heat source with the following exceptions and comments. 

1. The handbook value f o r  t he  copper-constantan thermocouple emf- 

temperature r e l a t ionsh ip  should be used o r  the thermocouple should be 

ca l ib ra t ed  i n  the temperature region of i n t e r e s t .  

2. Except f o r  samples with very low thermal conductivity,  it 

w i l l  normally be poss ib le  t o  obta in  a l i n e a r  r e l a t ionsh ip  between tempera- 

t u re  and logarithm time so t h a t  the thermal conductivity can be obtained 

from Equation 4. For materials with higher thermal conduc t iv i t i e s ,  such 

as porous o r  s o l i d  rocks, the l i n e a r  por t ion  of the test w i l l  u sua l ly  oc- 

cu r  between 1/2 and 5 minutes. 

3. The heated length  of the  probe, used i n  ca l cu la t ions ,  is 

4-13/16 inches (12 ,2  cm). 

2,6 SPARE AND REPLACEMENT PARTS 

Replacement p a r t s  should not be needed f o r  the l i n e  heat source ap- 

paratus and thermal conductivity apparatus themselves. The base p l a t e  

assembly and sample holders may requi re  the following: 

1. Flu id  Tubing F i t t i n g s  - Copper f l a r e  washers fo r  1/4" 

tubing #625-F Imperial  Brass Go., Chicago, I l l i n o i s .  

2. Compression Sea ls  - National Research Corporation, 

Cambridge, Mass., $11313 wi th  3/8" - 1/2" rubber seal ., 
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2.7 

3. B e l l  Jar and Gasket - National Research Corporation, 

Cambridge, Mass. , 12" x 12" P B e l l  Jar #3191-21378, 

Gash t P3949. 

4. Thermocouple Feedthrounh - C Corporation, Buffalo, 

New York, Type TG-20-A-6 w i t  - w i r e  rubber bushing. 

SAMPLE CALCULATIONS 

2.7.1 Thermal Conductivity Probe 

This sample ca l cu la t ion  i s  given f o r  T e s t  1 using the thermal con- 

duc t iv i ty  probe operated on January 20 a t  the  Research Pro jec ts  Laboratory. 

Sample Material - Pumice Powder 

Gas Pressure - Atmospheric (assumed 760 t o r r )  

A.  E s t i m a t e  of Heater Power Requirements 

A t  atmospheric pressure,  experience shows that a power of 5mw/cm is  

des i rab le  f o r  probe measurements with pumice powder. 

Probe hea ter  length = 4-13/16" = 12.22 cm 

Required power = 5mw/cm x 12.22 cm = 61.1 mw 

Probe res i s tance  = 214 ohms 

Power = V2/R; V = 1/214 x 0.0611 = 3.6 v o l t s  

Approximate hea ter  voltage should be 3-4 v o l t s .  

B o  Reduction of Temperature Data 

I n i t i a l  temperature = 1.012 mv = 25.6OC 

I n  t h i s  temperature range, the output of the copper-constantan junc- 

t i on  i s  0.0408 mv/OC (handbook value).  

t a b l e  of temperature rise versus time as follows: 

Using t h i s  value we prepare a 
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C h a r t  Temperature - Time Reading R i s e  

(min) (microvolts) (OC) 

0.25 

0.50 

0.75 

1 .o 
1.5 

2 .o 
2.5 

3.0 

3.5 

4.0 

4.5 

5 .O 
5.5 

6 .O 
6.5 

7 .O 
7.5 

45 

56 

62.5 

67.5 

74.0 

79 .O 
82.0 

84.5 

87 .O 
89.0 

90.5 

92.0 

93.2 

94.5 

95.4 

96.3 

97.4 

1.10 

1.37 

1.53 

1.65 

1.81 

1.94 

2.01 

2.07 

2.13 

2.18 

2.22 

2.26 

2.28 

2.32 

2.34 

2.36 

2.38 

A p l o t  of the temperature rise versus t i m e  i s  shown i n  Figure 32. 

Note t h a t  a l i n e a r  r e l a t i o n  i s  observed from less than 1 minute t o  about 

6 minutes. The s t r a i g h t  l i n e  w a s  drawn by inspect ion through the points .  

C. Calculat ion of Thermal Conductivity 

For t h i s  test ,  the following data  w a s  obtained: 

V = 3.89 v o l t s  

I = 18.2 mamps 

Power = I x V = 70.9 mw 
Power/Length = 70.9 mwl12.22 cm = 5.80 mw/cm 

Assume: tl = 0.5 min 

t2 = 5.0 min 

Then from the p l o t  of temperature rise versus time, we obtain 
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T1 = 1.38OC 

T2 = 2.27OC 

Using Equation 4 we obtain 

4 x 3.14 x 0.89 k =  

This compares favorably with the values reported i n  our previous 
s tud ies .  (19) 

2.7.2 L i n e  Heat Source 

The ca lcu la t ions  for  the l i n e  hea t  source apparatus are iden t i ca l  

t o  those given above. 

been given i n  our previous work. 

A descr ip t ion  of the curve matching method has 
(19) 
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